2 resultados para Gram-negative bacteria.
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Das Chemokin 'Monocyte Chemoattractant Protein-1' (MCP-1) spielt bei inflammatorischen Erkrankungen eine wesentliche Rolle. Verschiedene Zelltypen produzieren MCP-1. Es interessierte, welche Stimuli in Monozyten MCP-1 induzieren können und welche Signaltransduktionskaskaden daran beteiligt sind. Darüber hinaus sollte die Rolle einzelner Transkriptionsfaktoren und Promotorregionen des MCP-1-Gens untersucht werden.Komponenten Gram-positiver und -negativer Bakterien, Phorbolester und Substanzen, die die intrazelluläre Calciumkonzentration erhöhen, induzierten die MCP-1-Expression in einer humanen myelomonozytären Zellinie (THP-1) und in frisch isolierten Monozyten. Die mit Lipopolysaccharid (LPS)-induzierte MCP-1-Expression war stark von der MAPK/ERK-Kinase (MEK)-1/-2 und von I-kappaB Kinasen beziehungsweise NF-kappaB abhängig, dagegen scheinen Calcineurin, Calmodulinkinasen und die 'Mitogen-Activated Protein Kinase' p38 keine entscheidende Rolle zu spielen. Die Thapsigargin (TG)-induzierte MCP-1-Bildung durch Erhöhung der intrazellulären Calciumkonzentration war zusätzlich von Calcineurin und Calmodulinkinasen abhängig. Als nukleäre Transkriptionsfaktoren wurden bei der LPS-Stimulation NF-kappaB sowie AP-1 und zusätzlich NF-ATc3 bei Stimulation durch TG nachgewiesen. Die Untersuchung des MCP-1-Promotors konnte eine Bindung von NF-kappaB- und AP-1-Mitglieder an eine bislang nicht untersuchte distale Region und eine AP-1-Bindung an eine proximale Region nachweisen. Die Ergebnisse lassen den Schluß zu, daß die Aktivierung der MCP-1-Expression durch verschiedene Stimuli unter Beteiligung teilweise unterschiedlicher Signaltransduktionswege abläuft und sowohl eine proximale als auch eine distale Promotorregion des MCP-1-Gens daran beteiligt ist.
Resumo:
Weizenstroh als erneuerbare Ressource zur Produktion von Biopolymeren und wichtigen Grundchemikalien stellt eine ökologisch sinnvolle Alternative dar. Durch die vom PFI durchgeführte Thermodruckhydrolyse konnte das Weizenstroh und die darin enthaltenen Zucker fast vollständig mobilisiert werden. Ein umfangreiches Screening nach Organismen, welche die Zucker des Weizenstrohs verwerten konnten, ergab, dass einige wenige Stämme zur PHB-Bildung aus Xylose befähigt waren (10 %). Zur PHB-Synthese aus Glucose waren indes ca. doppelt so viele Organismen in der Lage (20 %). Zwei der insgesamt 118 untersuchten Organismen zeigten besonders gute PHB-Bildung sowohl mit Xylose als auch mit Glucose als Substrat. Dabei handelte es sich um die hauseigenen Stämme Bacillus licheniformis KHC 3 und Bacillus megaterium KNaC 2. Nach Enttoxifizierung der hemicellulosischen Fraktion konnte diese als C-Quelle im Mineral Medium eingesetzt werden. Burkholderia sacchari DSM 17165 und Hydrogenophaga pseudoflava DSM 1034, sowie die hauseigenen Isolate Bacillus licheniformis KHC 3 und Bacillus megaterium KNaC 2 wurden für die Synthese von PHB aus der hemicellulosischen Fraktion verwendet. Die Zucker der hemicellulosischen Fraktion (Xylose, Glucose, Arabinose) konnten durch diese Organismen zur PHB-Synthese genutzt werden. Hierbei stellte sich heraus, dass die beiden Bacillus-Stämme besser zur Produktion von PHB aus dem hemicellulosischen Hydrolysat geeignet waren als die Stämme der DSMZ. Die alternative Umsetzung der im hemicellulosischem Hydrolysat enthaltenen Zucker (Xylose, Glucose und Arabinose) in die wichtigen Grundchemikalien Lactat und Acetat konnte durch die Verwendung von heterofermentativen Milchsäurebakterien verwirklicht werden. Die Bildung dieser wichtigen Grundchemikalien stellt eine interessante Alternative zur PHB-Synthese dar. Die Menge an teuren Zusätzen wie Tomatensaft, welcher für das Wachstum der MSB essentiell war, konnte reduziert werden. Die Glucose der zweiten Fraktion des Weizenstrohs, der cellulosischen Fraktion, konnte ebenfalls durch den Einsatz von Mikroorganismen in PHB umgewandelt werden. Kommerzielle Cellulasen der Firma Novozymes konnten große Mengen an Glucose (≥10 g/l) aus der cellulosischen Fraktion freisetzen. Diese freie Glucose wurde mit Hilfe von Cupriavidus necator DSM 545, Cupriavidus necator NCIMB 11599, Bacillus licheniformis KHC 3 und Bacillus megaterium KNaC 2 zu PHB fermentiert. Wie auch beim hemicellulosischen Hydrolysat konnten hier die beiden Bacillus-Stämme die besten Ergebnisse erzielen. Bei ihnen machte die PHB mehr als die Hälfte der Trockenmasse aus. Die Abtrennung des Zielprodukts ohne die Verwendung von umweltschädlichen Lösungsmitteln wurde durch die Lyse der Zielzellen durch eigens isolierte Enzyme aus Streptomyceten verwirklicht. Die Zelllyse durch die Enzyme aus Streptomyces globisporus subsp. caucasius DSM 40814 und Streptomyces albidoflavus DSM 40233 war erfolgreich und zeigte vor allem bei den Bacillen hohe Wirkung (83 % und 99 % Zelllyse). Bei dem Gram-negativen Organismus Cupriavidus necator DSM 428 konnte die anfangs niedrige Zelllyse von 38 % durch Ultraschallbehandlung auf ca. 75 % erhöht werden.