4 resultados para Glucan

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Botrytis cinerea ist einer der wichtigsten Phytopathogene, der im Bereich der Weinbereitung als Erreger des Edel- bzw. des Grauschimmels von Trauben eine zentrale Stellung einnimmt. Taxonomisch gehört dieser Organismus zur Familie der Sclerotiniaceae, die ausnahmslos Phytopathogene sind und weltweit große Schäden bei verschiedenen Pflanzen verursachen. Die molekularbiologische Identifikation von Vertretern dieser wichtigen Gruppe von Pflanzenpathogenen ist jedoch bis heute ein Problem. Aus diesem Grund wurde in der vorliegenden Arbeit als Themenschwerpunkt die zweifelsfreie Identifikation einiger Vertreter der Sclerotiniaceae bearbeitet. Hier konnte von neun verschiedenen Organismen die ‚Internal Transcribed Spacer Region’ identifiziert und zusätzlich zur 18S rDNA für eine sichere Identifikation ausgeschlossen werden. Die Unterscheidung der einzelnen Gattungen und verschiedener B. cinerea-Stämme wurde mit Hilfe der neuartigen nSAPD-PCR Technologie erfolgreich überprüft. Hier konnten die drei Gattungen Botrytis, Monilinia sowie Sclerotinia zweifelsfrei differenziert werden. Ferner konnten von Monilinia fructigena, Sclerotinia minor und Sclerotinia sclerotiorum neue Laccase-Gene identifiziert und komplett sequenziert werden, die homolog zur Laccase2 (lcc2) von B. cinerea sind. Auf Basis dieser Sequenzen bzw. Sequenzunterschiede konnte eine Multiplex-PCR zur zweifelsfreien Identifi-kation dieser Spezies etabliert werden. Im Folgenden konnte dieses System auch an Umweltproben aus der Umgebung von Mainz und Wiesbaden, aus Flomborn (Rheinhessen) sowie aus Stollberg (Sachsen) überprüft werden. Anhand dieser Proben konnte gleichzeitig ein konstantes Vorkommen dieses Gens in allen über-prüften Organismen gezeigt werden. Somit ist es zum ersten Mal möglich, ver-schiedene Spezies der Sclerotiniaceae in einer Probe simultan nachzuweisen und zu differenzieren. Anschließend wurde die Laccase-Expression der jeweiligen Sclerotiniaceae überprüft. Für M. fructigena konnte mindestens eine konstitutiv exprimierte Laccase im Kulturüberstand detektiert werden. Im Gegensatz dazu zeigten weder S. minor noch S. sclerotiorum eine derartige Aktivität. Da B. cinerea lcc2 expri-miert, wurde dies auch für M. fructigena angenommen. Die reverse Transkription der codierenden mRNA konnte jedoch nicht erfolgreich durchgeführt werden. Die Analyse des Genoms von B. cinerea und S. sclerotiorum zeigte zudem 13 bzw. 8 mögliche Laccase-Gene. Somit ist es wahrscheinlich, dass M. fructigena mehr als einen codierenden Bereich für ein derartiges Enzym besitzt und somit eine oder mehrere andere Laccasen exprimiert. Auf Basis der codierenden DNA-Sequenzen konnten EDV-gestützte Prote-incharakterisierungen mit allen neu entdeckten Laccase-Sequenzen durchgeführt werden. Die hier ermittelten Eigenschaften legen den Schluss nahe, dass es sich ausnahmslos um Proteine handelt, die extrazellulär lokalisiert sind. So besitzen alle drei eine identisch lange Signalsequenz, die für die Translokation in die extra-zelluläre Matrix nötig ist. Des Weiteren zeigen alle Laccasen eine schwache Hydrophobizität, so dass davon ausgegangen werden kann, dass diese Enzyme keine membranständigen Proteine sind. Auch konnten zahlreiche Glykosylie-rungspositionen ermittelt werden und bei M. fructigena die Glykosylierung der akti-ven Laccase nachgewiesen werden. Des Weiteren konnten alle konservierten Kupferbindepositionen ermittelt werden. Der Vergleich zur mRNA der Lcc2 von B. cinerea offenbarte die lcc2 von M. fructigena drei nicht-codierende Intronse-quenzen, für S. minor und S. sclerotiorum jedoch lediglich die ersten beiden. Somit bleibt für alle neu identifizierten Sequenzen die Frage nach der Expression offen. Es wurden weder Deletionen von Nukleotiden noch frame-shift Mutationen in den einzelnen Genen gefunden. Auch geben die Signalsequenzen bzw. die ent-haltenen Kupferbindepositionen keine Aufschluss über das Ausbleiben der Ex-pression dieser Gene. Da das von B. cinerea synthetisierte ß-1,3-1,6-Glucan in der Kellerwirtschaft große Filtrationsprobleme verursacht, wurde als ein zusätzlicher Themenschwerpunkt die Lyse dieses Polymers mit symbiontischen Mikroorganismen aus Termitendär-men untersucht. Da Termiten auf den Abbau von Polymeren, wie Cellulose und Hemicellulosen spezialisiert sind, lag die Vermutung nahe, dass auch das ß-Glucan von symbiontischen Mikroorganismen hydrolysiert werden kann. In der hier vorliegenden Arbeit konnte zwar das ß-Glucan erfolgreich herge-stellt und in pulverisierter Form 5 verschiedenen Termitenspezies als Futter ange-boten werden, die anschließende Isolierung der Darmflora und die Untersuchung der isolierten Mikroorganismen auf ein mögliche glucanolytische Aktivität erbrach-te jedoch nicht den erhofften Erfolg. Hier wurden acht verschiedene filamentöse Ascomyceten bzw. Zygomyceten isoliert, eine lytische Aktivität konnte jedoch bei keiner dieser Spezies gezeigt werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurde die erste β-1,3-Glucanase aus Delftia beschrieben. Es konnte gezeigt werden, dass das Enzym unter anderem gegen das nur schwer zu hydrolysierende Exopolysaccharid aus Pediococcus parvulus wirkte. rnrnIm Einzelnen wurde zunächst das Exopolysaccharid aus Pediococcus parvulus B399 aus einem eigens zusammengestellten β-Glucan-Synthesemedium (Medium M) isoliert und gereinigt. Anschließend erfolgte eine umfassende Charakterisierung des Biopolymers. Hierzu gehörten neben der sauren Hydrolyse zur Bestimmung der Monomerzusammensetzung des Polymers, auch spektroskopische Methoden, darunter 1H und 13C-NMR. Mithilfe der NMR-Spektroskopie konnte die Struktur des Exopolysaccharids aus Pediococcus parvulus B399 bestimmt werden. Es handelte sich hierbei ebenfalls um ein β-1,3(1,2)-Glucan, wie es bereits für Pediococcus parvulus 2.6 beschrieben wurde. Darüber hinaus wurde erstmals ein ATR-FTIR-Spektrum für ein Exopolysaccharid aus Pediokokken gezeigt. Über GPC-Messungen konnte auch die molekulare Größe des β-1,3(1,2)-Glucans aus Pediococcus parvulus B399 bestimmt werden. Es wurde nachgewiesen, dass sich das Exopolysaccharid bei Anzucht in Medium M aus einer hochmolekularen Fraktion (5*106 g/mol) und vier niedermolekularen Fraktionen (347; 818; 10048 und 20836 g/mol) zusammensetzte. Neben der strukturellen Charakterisierung, wurde das Exopolysaccharid auch rheologisch untersucht. Dabei konnte festgestellt werden, dass es sich durch seine schwach gelbildenen Eigenschaften auch zum Einsatz in der Lebensmittelindustrie als Stabilisator, Fettersatzmittel oder ähnliches eignen würde. Die erwähnte gelbildende Netzwerkstruktur konnte für das Exopolysaccharid aus Pediococcus parvulus B399 auch erstmals im AFM bestätigt werden. rnEin weiterer Teil der Arbeit umfasste ein breites Screeningverfahren nach einem geeigneten Organismus, der das Exopolysaccharid aus Pediococcus parvulus B399 effektiv hydrolysieren sollte. Aus einer Anreicherungskultur des Termitendarms (Wenzel et al., 2002), konnte Delftia sp. MV01 isoliert werden. Dieser Organismus produzierte bei Wachstum in β glucanhaltigem Medium (Exopolysaccharid aus Pediococcus parvulus B399, sowie weitere kommerziell erhältliche β-1,3-Glucane) eine Glucanase, die in folgenden Schritten konventionell gereinigt und charakterisiert wurde.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diese Arbeit untersucht zwei Lipoproteine, das discoidale High density-Lipoprotein (dHDL) und das β-Glukan-Bindeprotein (BGBP) aus dem Flusskrebs Astacus leptodactylus in funktioneller, struktureller und phylogenetischer Hinsicht. Die Nukleotid-Sequenz des BGBP konnte nahezu vollständig entschlüsselt werden. Dabei errechnet sich aus der abgeleiteten Aminosäure-Sequenz ein Molekulargewicht von 153 kDa. Das reife BGBP hat nur eine molekulare Masse von 105 kDa. Vermutlich kommt es durch eine Furin-ähnliche Protease zu einer post-translationalen N- und C-terminalen Prozessierung: zwei bisher nicht beschriebene, aber auch in der BGBP-Sequenz von anderen höheren Krebsen vorhandene, typische Furin-Schnittstellen (RAKR, bzw. RARR) wurden anhand von Sequenzvergleichen identifiziert. BGBP hat zwei Funktionen: zum Einen ist es für den Transport und die Aktivierung des proPhenoloxidase-Systems zuständig, zum Anderen für die Versorgung der Organe mit Lipiden, welche vermutlich der Energiegewinnung dienen. Eine 100 kDa große, BGBP-bindende Rezeptor-Fraktion konnte in Hämocyten-Membranen identifiziert werden. Das Vorkommen von dHDL war aus eigenen Befunden bisher ausschließlich in Astacus leptodactylus bekannt, doch konnte in dieser Arbeit ein mit dem dHDL-Antikörper reagierendes Protein erstmalig auch in anderen Arthropoden-Spezies nachgewiesen werden. Die discoidale Form und das Untereinheiten-Muster (240 + 85 kDa) sind typisch für die bei Vertretern ursprünglicher Tiergruppen gefundenen Lipoproteine (z.B. beim Cheliceraten Limulus und beim Polychaeten Nereis). Eventuell handelt es sich bei dHDL also um einen ‚Prototypen’ in der Lipoprotein-Evolution. Obwohl die Sequenz des dHDL auf Nukleotid-Ebene unbekannt ist, wurden die Sequenzen einiger dHDL-Peptide aus massenspektroskopischen Analysen gewonnen. Überraschenderweise befinden sich diese Sequenzen in der Aminosäuresequenz des BGBP. Dabei liegen alle Peptide am N- und/oder am C-Terminus der abgeleiteten BGBP-Aminosäure-Sequenz, und zwar in den Bereichen, die vermutlich durch das erwähnte Furin vom BGBP abgeschnitten werden, im reifen BGBP also gar nicht mehr vorkommen. Deshalb ist zu vermuten, dass BGBP und dHDL ein gemeinsames Vorläuferprotein haben und durch Genduplikation entstanden sind, oder dass es sich beim dHDL- und beim BGBP-Gen um ein und dasselbe Gen handelt. Das Genprodukt wird dann auf unterschiedliche Weise prozessiert und es entstehen die beiden Proteine dHDL und BGBP. Die Funktion von dHDL ist noch nicht eindeutig geklärt, es ließen sich aber dHDL-bindende Rezeptor-Fraktionen mit einer molekularen Masse von 160 kDa in somatischen Geweben (Muskel, Darm, Hepatopankreas, Kiemen und Samenleiter) sowie in Oocyten und Hämocyten nachweisen. Deshalb wird vermutet, dass dHDL als Energielieferant in Stoffwechsel-aktiven Organen und als Speicherprotein in Oocyten dient. Eine endocytotische Aufnahme konnte gezeigt werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hefen stellen einen großen und wichtigen Teil der Mikrobiota während der Weinbereitung dar, da ohne ihre alkoholische Fermentation die Umwandlung von Most und Wein nicht möglich wäre. Ferner ist es ihre Vielzahl an Stoffwechselprodukten, die dem Aroma des fertigen Weines eine zusätzliche Komplexität verleihen. Auf der anderen Seite steht durch den Metabolismus verschiedenster so genannter Wildhefen die Gefahr von Qualitätsabstufungen der Weine, was allgemein als „Weinfehler“ betrachtet wird. Ziel dieser Arbeit war zum einen die taxonomische Einordnung von Saccharomyces-Spezies, sowie die Quantifizierung und Hemmung von ausgewählten Wildhefen während der Weinbereitung.rnEin Teil dieser Arbeit umfasste die Identifizierung der nahverwandten Mitglieder der Saccharomyces sensu stricto-Gruppe. Durch den Einsatz des DNA-Fingerpinting-Systems SAPD-PCR konnten alle die Gruppe umfassenden Spezies anhand spezifischer Bandenmuster nachgewiesen werden, wodurch eine Einordnung dieser schwer zu differenzierenden Arten möglich war. Die Differenzierung zwischen den einzelnen Spezies war in jedem Fall deutlicher als dies die Sequenzierung der 5.8S rDNA und ihre flankierenden ITS-Regionen vermochte. Die SAPD-PCR zeichnete sich zudem durch eine geringe Muster-Varianz bei verschiedenen Stämmen einer Art aus und konnte zuverlässig unbekannte Stämme bestimmen und bereits hinterlegte Stämme neu klassifizieren. Zudem konnte mit Hilfe dieses Systems Hybride aus Saccharomyces cerevisiae und S. bayanus bzw. S. cerevisiae und S. kudriavzevii detektiert werden, wenn diese Hybride aus relativ gleichen genomischen Anteilen der Eltern bestanden. rnZusätzlich wurde ein quantitatives PCR-System entwickelt, um die Gattungen Saccharomyces, Hanseniaspora und Brettanomyces in Most und Wein detektieren und quantifizieren zu können. Die hierfür entwickelten Primer zeigten sich spezifisch für die untersuchten Arten. Durch die serielle Verdünnung definierter DNA-Mengen konnte für alle drei Systeme eine Kalibrierungskurve erstellt werden, mit Hilfe derer die tatsächlichen Quantifizierungen durchgeführt wurden. Die qPCR-Analyse lieferte ähnliche Zellzahlen wie Lebendzellzahl-Bestimmungen und wurde nicht von anderen Spezies und von Traubensaft gestört. Die maximal detektierbare Zellzahl betrug 2 x 107 Zellen/ml, während die minimale Detektionsgrenze je nach Art zwischen 1 x 102 Zellen/ml und 1 x 103 Zellen/ml lag. Allerdings konnte eine effektive DNA-Isolierung dieser geringen Zellzahlen nur erreicht werden, wenn die Zellzahl durch artfremde Hefen künstlich erhöht wurde. Die Analyse einer Most-Vergärung mit den drei Spezies zeigte schlussendlich, dass die quantitative PCR sicher und schnell Veränderungen und Sukzessionen detektiert und so ein geeignetes Mittel darstellt, um Populationsdynamiken während der Weinherstellung zu beobachten. rnDer letzte Teil dieser Arbeit befasste sich mit der Inhibierung von Schadhefen durch zellwand-hydrolysierende Enzyme. Es konnte hierbei eine endoglykosidisch wirkende β-1,3-Glucanase aus dem Bakterium Delftia tsuruhatensis isoliert werden. Diese besaß eine ungefähre Masse von 28 kDa, einen isolektrischen Punkt von ca. 4,3 und wirkte mit einer spezifischen Aktivität von 10 U/mg Protein gegen das Glucan Laminarin. Zudem zeigte das Enzym ein Temperaturoptimum von 50 °C und ein pH-Optimum bei pH 4,0. Weinparameter wie erhöhte Konzentrationen an Ethanol, Phenolen und Sulfit beeinflussten die Wirkung des Enzyms nicht oder nur wenig. Neben der allgemeinen Wirkung gegen β-1,3-Glucane konnte hier auch gezeigt werden, dass ebenso gut die β-1,3-Glucane in der Zellwand verschiedener Hefen hydrolysiert wurden. Fluoreszenz- und rasterelektronen-mikroskopische Aufnahmen von Hefezellen nach Inkubation mit der β-1,3-Glucanase zeigten zusätzlich die Zerstörung der Zelloberfläche der Hefen. Die lytische Wirkung des Enzyms wurde an verschiedenen weintypischen Hefen getestet. Hierbei zeigten sich stammspezifische Unterschiede in der Sensitivität gegenüber dem Enzym. Außerdem konnte festgestellt werden, dass sowohl Wachstumsphase als auch Medium der Hefen Einfluss auf deren Zellwand hat und somit auch auf die Wirkung des Enzyms.rn