4 resultados para Genetic-evidence
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Linear dispersal systems, such as coastal habitats, are well suited for phylogeographic studies because of their low spatial complexity compared to three dimensional habitats. Widely distributed coastal plant species additionally show azonal and often essentially continuous distributions. These properties, firstly, make it easier to reconstruct historical distributions of coastal plants and, secondly, make it more likely that present distributions contain both Quaternary refugia and recently colonized areas. Taken together this makes it easier to formulate phylogeographic hypotheses. This work investigated the phylogeography of Cakile maritima and Eryngium maritimum, two species growing in sandy habitats along the north Atlantic Ocean and the Mediterranean Sea coasts on two different spatial scales using AFLP data. The genetic structure of these species was investigated by sampling single individuals along most of their distributions from Turkey to south Sweden. On a regional scale the population genetic structure of both species was also studied in detail in the Bosporus and Dardanelles straits, the Strait of Gibraltar and along a continuous stretch of dunes in western France. Additionally, populations of C. maritima were investigated in the Baltic Sea/Kattegat/North Sea area. Over the complete sampling range the species show both differences and similarities in their genetic structure. In the Mediterranean Sea, both species contain Aegean Sea/Black Sea and west Mediterranean clusters. Cakile maritima additionally shows a clustering of Ionian Sea/Adriatic Sea collections. Further, both species show a subdivision of Atlantic Ocean/North Sea/Baltic Sea material from Mediterranean. Within the Atlantic Ocean group, C. maritima from the Baltic Sea and the most northern Atlantic localities form an additional cluster while no such substructure was found in E. maritimum. In all three instances where population genetic investigations of both species were performed in the same area, the results showed almost complete congruency of spatial genetic patterns. In the Aegean/Black Sea/Marmara region a subdivision of populations into a Black Sea, a Sea of Marmara and an Aegean Sea group is shared by both species. In addition the Sea of Marmara populations are more close to the Aegean Sea populations than they are to the Black Sea populations in both cases. Populations from the Atlantic side of the Strait of Gibraltar are differentiated from those on the Mediterranean side in both species, a pattern that confirms the results of the wide scale study. Along the dunes of West France no clear genetic structure could be detected in any of the species. Additionally, the results from the Baltic Sea/North Sea populations of C. maritima did not reveal any geographical genetic pattern. It is postulated that the many congruencies between the species are mainly due to a predominantly sea water mediated seed dispersal in both species and their shared sandy habitat. The results are compared to hypothetical distributions for the last glacial maximum based on species specific temperature requirements. It is argued that in both species the geographical borders of the clusters in the Mediterranean area were not affected by quaternary temperature changes and that the Aegean/Black Sea/Marmara cluster, and possibly the Ionian Sea/Adriatic Sea cluster in C. maritima, is the result of sea currents that isolate these basins from the rest of the sampled areas. The genetic gap in the Strait of Gibraltar between Atlantic Ocean and Mediterranean Sea populations in both species is also explained in terms of sea currents. The existence of three subgroups corresponding to the Aegean Sea, Black Sea and Sea of Marmara basins is suggested to have arisen due to geographical isolation during periods of global sea regressions in the glacials. The population genetic evidence was inconclusive regarding the Baltic Sea cluster of C. Maritima from the wide scale study. The results of this study are very similar to those of an investigation of three other coastal plant species over a similar range. This suggests that the phylo-geographic patterns of widespread coastal plants may be more predictable than those of other terrestrial plants.
Resumo:
Analyses of low density lipoprotein receptor-related protein 1 (LRP1) mutant mouse embryonic fibroblasts (MEFs) generated from LRP1 knock-in mice revealed that inefficient maturation and premature proteasomal degradation of immature LRP1 is causing early embryonic lethality in NPxY1 and NPxY1+2 mutant mice. In MEFs, NPxY2 mutant LRP1 showed efficient maturation but, as expected, decreased endocytosis. The single proximal NPxY1 and the double mutant NPxY1+2 were unable to reach the cell surface as an endocytic receptor due to premature degradation. In conclusion, the proximal NPxY1 motif is essential for early sorting steps in the biosynthesis of mature LRP1.rnThe viable NPxY2 mouse was used to provide genetic evidence for LRP1-mediated amyloid-β (Aβ) transport across the blood-brain barrier (BBB). Here, we show that primary mouse brain capillary endothelial cells (pMBCECs) express functionally active LRP1. Moreover, demonstrate that LRP1 mediates [125I]-Aβ1-40 transcytosis across pMBCECs in both directions, whereas no role for LRP1-mediated Aβ degradation was detected. Aβ transport across pMBCECs generated from NPxY2 knock-in mice revealed a reduced Aβ clearance in both directions compared to WT derived pMBCECs. Finally, we conclude that LRP1 is a bona-fide receptor involved in bidirectional transcytosis of Aβ across the BBB.rn
Resumo:
According to the amyloid hypothesis, Alzheimer’s disease (AD) is caused by aberrant production or clearance of the amyloid-β (Aβ) peptides, and in particular of the longer more aggregation-prone Aβ42. The Aβ peptides are generated through successive proteolytic cleavage of the amyloid precursor protein (APP) by the β-site APP cleaving enzyme (BACE) and γ-secretase. γ-secretase produces Aβ peptides with variable C-termini ranging from Aβ34 to Aβ48, presumably by sequential trimming of longer into shorter peptides. γ-secretase is a multiprotein complex consisting of at least four different proteins and the presenilin proteins (PS1 or PS2) contain the catalytic center of the complex. In 2001 several non-steroidal anti-inflammatory drugs were identified as the founding members of a new class of γ-secretase modulators (GSMs) that can selectively reduce production of Aβ42. Concomitantly, these GSMs increase Aβ38 production indicating closely coordinated generation of Aβ42 and Aβ38 and a potential precursor-product relationship between these peptides. GSMs seem to exert their activity by direct modulation of γ-secretase. Support for this hypothesis is drawn from the finding that some PS mutations associated with early-onset familial AD (FAD) can modulate the cellular response to GSMs and to γ-secretase inhibitors (GSIs), which inhibit production of all Aβ peptides and are known to directly interact with PS. A particularly interesting FAD PS mutation is PS1-ΔExon9, a complex deletion mutant that blocks endoproteolysis of PS1 and renders cells completely non-responsive to GSMs. Studies presented in this thesis show that the diminished response of PS1-ΔExon9 to GSMs is mainly caused by its lack of endoproteolytic cleavage. Furthermore, we were able to demonstrate that a reduced response to GSMs and GSIs is not limited to PS1-ΔExon9 but is a common effect of aggressive FAD-associated PS1 mutations. Surprisingly, we also found that while the Aβ42 response to GSMs is almost completely abolished by these PS1 mutations, the accompanying Aβ38 increase was indistinguishable to wild-type PS1. Finally, the reduced response to GSIs was confirmed in a mouse model with transgenic expression of an aggressive FAD-associated PS1 mutation as a highly potent GSI failed to reduce Aβ42 levels in brain of these mice. Taken together, our findings provide clear evidence for independent generation of Aβ42 and Aβ38 peptides, and argue that the sequential cleavage model might be an oversimplification of the molecular mechanism of γ-secretase. Most importantly, our results highlight the significance of genetic background in drug discovery efforts aimed at γ-secretase, and indicate that the use of cellular models with transgenic expression of FAD-associated PS mutations might confound studies of the potency and efficacy of GSMs and GSIs. Therefore, such models should be strictly avoided in the ongoing preclinical development of these promising and potentially disease-modifying therapeutics for AD.
Resumo:
The central aim of the present study was to analyse ecological and geographical mechanisms that led to the species diversity and distribution pattern of the South African (sub-) endemic Bruniaceae shown today. To answer the question if the endangerment of some species and the sometimes restricted distribution area is due to an incongruence of pollination and breeding system, pollinator observations and the breeding system were analysed. rnThe effectiveness of the plant-pollinator interactions should be reflected in the reproductive success wherefore fruit set analyses were carried out. The genetic constitution of distant and close-by populations along a spatial gradient should illuminate gene-flow or habitat isolation that could have led to the species diversity. Since niche-inhabitation could be shown in the present study, an overall biogeographical analysis illuminated the distribution pattern on family level and the geographical as well as ecological factors that led to species persistence. rnThe study illuminated that the plant-pollinator interactions and the breeding system are adaptations to the fynbos biome but can not be defined as factors that drove speciation or have tremendous influence on distribution of Bruniaceae. In fact the geography of South Africa with its fragmented landscape as well as close niche-inhabitation of co-occuring species is the reason for species diversity and the recent distribution.rn