3 resultados para Gene Doping, Performance-Enhancement, Pragmatic Ethics
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Pharmacological cognitive enhancement (CE) is a topic of increasing public awareness. In the scientific literature on studentrnuse of CE as a study aid for academic performance enhancement, there are high prevalence rates regarding the use ofrncaffeinated substances (coffee, caffeinated drinks, caffeine tablets) but remarkably lower prevalence rates regarding the usernof illicit/prescription stimulants such as amphetamines or methylphenidate. While the literature considers the reasons andrnmechanisms for these different prevalence rates from a theoretical standpoint, it lacks empirical data to account for healthyrnstudents who use both, caffeine and illicit/prescription stimulants, exclusively for the purpose of CE. Therefore, wernextensively interviewed a sample of 18 healthy university students reporting non-medical use of caffeine as well as illicit/rnprescription stimulants for the purpose of CE in a face-to-face setting about their opinions regarding differences in generalrnand morally-relevant differences between caffeine and stimulant use for CE. 44% of all participants answered that there is arngeneral difference between the use of caffeine and illicit/prescription stimulants for CE, 28% did not differentiate, 28% couldrnnot decide. Furthermore, 39% stated that there is a moral difference, 56% answered that there is no moral difference andrnone participant was not able to comment on moral aspects. Participants came to their judgements by applying threerndimensions: medical, ethical and legal. Weighing the medical, ethical and legal aspects corresponded to the students’rnindividual preferences of substances used for CE. However, their views only partly depicted evidence-based medical aspectsrnand the ethical issues involved. This result shows the need for well-directed and differentiated information to prevent thernpotentially harmful use of illicit or prescription stimulants for CE.
Resumo:
The conversion of dissipated heat into electricity is the basic principle of thermoelectricity. In this context, half-Heusler (HH) compounds are promising thermoelectric (TE) materials for waste heat recovery. They meet all the requirements for commercial TE applications, ranging from good efficiencies via environmentally friendliness to being low cost materials. This work focused on the TE properties of Ti0.3Zr0.35Hf0.35NiSn-based HH materials. This compound undergoes an intrinsic phase separation into a Ti-poor and Ti-rich HH phase during a rapid solidification process. The resulting dendritic microstructure causes a drastic reduction of the thermal conductivity, leading to higher TE efficiencies in these materials. The TE properties and temperature dependence of the phase-separated Ti0.3Zr0.35Hf0.35NiSn compound were investigated. The TE properties can be adjusted depending on the annealing treatment. The extension of annealing time for 21 days at 1000 °C revealed a reduction of the thermal conductivity and thus an enhancement of the TE performance in this sample. An increase of annealing temperature caused a change of the phase fraction ratio in favor of the Ti-rich phase, leading to an improvement of the electronic properties. rnInspired by the TE properties of the Ti0.3Zr0.35Hf0.35NiSn HH compound, the performance of different n- and p-type materials, realized via site substitution with donor and acceptor elements was examined. The fabrication of a TE n- and p-type material pair based on one starting compound can guarantee similar TE and mechanical properties and is enormous beneficial for device engineering. As donor dopants V, Nb and Sb were tested. Depending on the lattice position small doping levels were sufficient to attain distinct improvement in their TE efficiency. Acceptor-induced doping with Sc, Y and Co caused a change in the transport behavior from n- to p- type conduction, revealing the highest Seebeck coefficients obtained in the MNiSn system. rnThen, the long-term stability of an exemplary n- and p-type HH compound was proven. Surprisingly, the dendritic microstructure can be maintained even after 500 cycles (1700 h) from 373 to 873 K. The TE performance of both n- and p-type materials showed no significant change under the long-term treatment, indicating the extraordinary temperature stability of these compounds. Furthermore both HH materials revealed similar temperature-dependence of their mechanical properties. This work demonstrates the excellent suitability of phase-separated HH materials for future TE applications in the moderate temperature range.rn
Targeting neuronal populations by AAV-mediated gene transfer for studying the endocannabinoid system
Resumo:
The cannabinoid type 1 (CB1) receptor is involved in a plethora of physiological functions and heterogeneously expressed on different neuronal populations. Several conditional loss-of-function studies revealed distinct effects of CB1 receptor signaling on glutamatergic and GABAergic neurons, respectively. To gain a comprehensive picture of CB1 receptor-mediated effects, the present study aimed at developing a gain-of-function approach, which complements conditional loss-of-function studies. Therefore, adeno-associated virus (AAV)-mediated gene delivery and Cre-mediated recombination were combined to recreate an innovative method, which ensures region- and cell type-specific transgene expression in the brain. This method was used to overexpress the CB1 receptor in glutamatergic pyramidal neurons of the mouse hippocampus. Enhanced CB1 receptor activity at glutamatergic terminals caused impairment in hippocampus-dependent memory performance. On the other hand, elevated CB1 receptor levels provoked an increased protection against kainic acid-induced seizures and against excitotoxic neuronal cell death. This finding indicates the protective role of CB1 receptor on hippocampal glutamatergic terminals as a molecular stout guard in controlling excessive neuronal network activity. Hence, CB1 receptor on glutamatergic hippocampal neurons may represent a target for novel agents to restrain excitotoxic events and to treat neurodegenerative diseases. Endocannabinoid synthesizing and degrading enzymes tightly regulate endocannabinoid signaling, and thus, represent a promising therapeutic target. To further elucidate the precise function of the 2-AG degrading enzyme monoacylglycerol lipase (MAGL), MAGL was overexpressed specifically in hippocampal pyramidal neurons. This genetic modification resulted in highly increased MAGL activity accompanied by a 50 % decrease in 2-AG levels without affecting the content of arachidonic acid and anandamide. Elevated MAGL protein levels at glutamatergic terminals eliminated depolarization-induced suppression of excitation (DSE), while depolarization-induced suppression of inhibition (DSI) was unchanged. This result indicates that the on-demand availability of the endocannabinoid 2-AG is crucial for short-term plasticity at glutamatergic synapses in the hippocampus. Mice overexpressing MAGL exhibited elevated corticosterone levels under basal conditions and an increase in anxiety-like behavior, but surprisingly, showed no changes in aversive memory formation and in seizure susceptibility. This finding suggests that 2 AG-mediated hippocampal DSE is essential for adapting to aversive situations, but is not required to form aversive memory and to protect against kainic acid-induced seizures. Thus, specific inhibition of MAGL expressed in hippocampal pyramidal neurons may represent a potential treatment strategy for anxiety and stress disorders. Finally, the method of AAV-mediated cell type-specific transgene expression was advanced to allow drug-inducible and reversible transgene expression. Therefore, elements of the tetracycline-controlled gene expression system were incorporated in our “conditional” AAV vector. This approach showed that transgene expression is switched on after drug application and that background activity in the uninduced state was only detectable in scattered cells of the hippocampus. Thus, this AAV vector will proof useful for future research applications and gene therapy approaches.