1 resultado para GLUT-1

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chlamydiae are obligate intracellular bacteria with a strong global prevalence. They cause infections of the eye, lung and the genital tract and can either replicate in inclusion compartments or persist inside their host cell. In this thesis we focused on two aspects of chlamydiae infection. We hypothesize that transcription factor AP-1 is crucial for a replicative chlamydiae infection in epithelial cells. In addition we suggest that chlamydiae hide inside apoptotic blebs for a silent uptake by macrophages as immune evasion strategy.rnFocusing on AP-1, we could demonstrate that during Chlamydia pneumoniae infection, protein expression and phosphorylation of the AP-1 family member c-Jun significantly increased in a time and dose dependent manner. A siRNA knockdown of c-Jun in HEp-2 cells reduced chlamydial load, resulting in smaller inclusions and a significant lower chlamydial recovery. Furthermore, inhibition of the c-Jun containing AP-1 complexes, using Tanshinone IIA, changed the replicative infection into a persistent phenotype, characterized by (i) smaller, aberrant inclusions, (ii) a strong decrease in chlamydial load, as well as by (iii) its reversibility after removal of Tanshinone IIA. As chlamydiae are energy parasites, we investigated whether Tanshinone IIA interferes with energy/metabolism related processes. rnA role for autophagy or gene expression of glut-1 and c-jun in persistence could not be determined. However we could demonstrate Tanshinone IIA treatment to be accompanied by a significant decrease of ATP levels, probably causing a chlamydiae persistent phenotype.rnRegarding the chlamydial interaction with human primary cells we characterized infection of different chlamydiae species in either pro-inflammatory (type I) or anti-inflammatory (type II) human monocyte derived macrophages (hMDM). We found both phenotypes to be susceptible to chlamydiae infection. Furthermore, we observed that upon Chlamydia trachomatis and GFP-expressing Chlamydia trachomatis infection more hMDM type II were infected. However the chlamydial load was higher in hMDM type I and correspondingly, more replicative-like inclusions were found in this phenotype. Next, we focused on the chlamydial transfer using a combination of high speed live cell imaging and GFP-expressing Chlamydia trachomatis for optimal visualization. Thereby, we could successfully visualize the formation of apoptotic, chlamydiae-containing blebs and the interaction of hMDM with these blebs. Moreover, we observed the development of a replicative infection in hMDM. rnIn conclusion, we demonstrated a crucial role of AP-1 for C. pneumoniae development and preliminary time lapse data suggest that chlamydiae can be transferred to hMDMs via apoptotic blebs. In all, these data may contribute to a better understanding of chlamydial infection processes in humans.rn