3 resultados para GALLIUM INTERMETALLIC COMPOUNDS

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mit dem System KCo2-xCuxS2 wurde ein neues magnetoresistives System gefunden. Der negative Magnetowiderstand ist mit der Größenordnung von 10 % in 8 Tesla bei 4 K klein im Vergleich zu Mangan-Perowskiten, jedoch eindeutig intrinsisch.Die magnetische Struktur des Thiospinells Fe0.5Cu0.5Cr2S4 konnte durch Neutronenbeugung, Mößbauer-Spektroskopie sowie begleitende Bandstrukturrechnungen aufgeklärt werden. Ein negativen Magnetowiderstand von 5,5 % nahe der Curie-Temperatur in Magnetfeldern von 8 Tesla bei der isostrukturellen eisenreichen Verbindung Fe0.75Cu0.25Cr2S4 wurde gefunden.Die intermetallischen Verbindungen des Gadoliniums weisen alle hohe negative Magnetowiderstände bei TC auf. Sowohl bei GdAl2 als auch bei GdPdP und GdPtP werden Widerstandsabsenkungen in 8 Tesla beobachtet, die bei ~1,5 TC 4 % erreichen und bis zu Temperaturen von 5 K über 6 % liegen. Während der Transportmechanismus in GdAl2 offenbar auf einer direkten Gd-Gd Wechselwirkung beruht, ist bei GdPdP und GdPtP bei tiefen Temperaturen ein nicht eindeutiges Verhalten beobachtbar. Ein Einfluss von Fremdphasen kann jedoch ausgeschlossen werden.Unter den metallreichen Phosphiden hexagonaler Struktur zeigt Fe2P große negative MR-Effekte von 7 % schon bei Raumtemperatur in hohen Feldern. Nahe der ferromagnetischen Ordnung reagiert die Verbindung auf äußere Felder bei niedrigen Feldstärken von weniger als 2 Tesla mit einer Erhöhung der Leitfähigkeit um 10 bis 11 %.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The so called material science is an always growing field in modern research. For the development of new materials not only the experimental characterization but also theoretical calculation of the electronic structure plays an important role. A class of compounds that has attracted a great deal of attention in recent years is known as REME compounds. These compounds are often referred to with RE designating rare earth, actinide or an element from group 1 - 4, M representing a late transition metal from groups 8 - 12, and E belonging to groups 13 - 15. There are more than 2000 compounds with 1:1:1 stoichiometry belonging to this class of compounds and they offer a broad variety of different structure types. Although many REME compounds are know to exist, mainly only structure and magnetism has been determined for these compounds. In particular, in the field of electronic and transport properties relatively few efforts have been made. The main focus in this study is on compounds crystallizing in MgAgAs and LiGaGe structure. Both structures can only be found among 18 valence electron compounds. The f electrons are localized and therefor not count as valence electrons. A special focus here was also on the magnetoresistance effects and spintronic properties found among the REME compounds. An examination of the following compounds was made: GdAuE (E = In, Cd, Mg), GdPdSb, GdNiSb, REAuSn (RE = Gd, Er, Tm) and RENiBi (RE = Pr, Sm, Gd - Tm, Lu). The experimental results were compared with theoretic band structure calculations. The first half metallic ferromagnet with LiGaGe structure (GdPdSb) was found. All semiconducting REME compounds with MgAgAs structure show giant magnetoresistance (GMR) at low temperatures. The GMR is related to a metal-insulator transition, and the value of the GMR depends on the value of the spin-orbit coupling. Inhomogeneous DyNiBi samples show a small positive MR at low temperature that depends on the amount of metallic impurities. At higher fields the samples show a negative GMR. Inhomogeneous nonmagnetic LuNiBi samples show no negative GMR, but a large positive MR of 27.5% at room temperature, which is interesting for application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heusler Materialien wurden bisher vor allem in Volumen- und Dünnfilmproben aufgrund ihrer technischen Bedeutung untersucht. In dieser Arbeit berichtet über die experimentellen Untersuchungen der chemischen Synthese, Struktur, und der magnetischen Eigenschaften von ternären Heusler-Nanopartikeln. Die grundlegenden Aspekte der Physik, Chemie und Materialwissenschaft bezüglich der Heusler Nanopartiikel wurden untersucht. Außerdem wurde eine silicatgestützte Herstellungsmethode für Karbon-ummantelte, ternäre intermetallische Co2FeGa Nanopartikel entwickelt. Die Bildung der L21 Co2FeGa Phase wurde mit Röntgenbeugung (XRD), Extended X-ray Absorption Fine Structure Spektroskopie (EXAFS), und 57Fe Mössbauer Spektroskopie bestätigt. Die Abhängigkeit der Phase und der der Größe der Co2FeGa Nanopartikel vom der Zusammensetzung der Precursor und des Silicats wurden untersucht. Durch das Koppeln der aus Transmissions-Elektronen-Mikroskopie (TEM) gewonnen Teilchengröße und der Mössbauerspektroskopie konnte die kritische Größe für den Übergang von superparamgnetischem zu ferromagnetischem Verhalten von Co2FeGa Nanopartikel ermittelt werden. Die silicatgestützte chemische Synthese von Co2FeGa Nanopartikeln besitzt großes Potential für eine generelle Herstellungsmethode für Co-basierte Heuser Nanopartikel. Des weiteren wurde auch eine chemische Herstellungsmethode von metallischen Nanopartikeln mit Synchrotronstrahlung untersucht, die so gewonnen Nanopartikel sind vielversprechende Materialien für die Nanobiotechnologie und die Nanomedizin.