5 resultados para G proteins -- Receptors

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Centrine sind Mitglieder einer hoch konservierten Überfamilie von Ca2+-bindenden Proteinen mit EF-Hand Motiven. Bislang sind vier Centrin-Isoformen bei Säugern beschrieben worden, die in diversen Zellen in der Regel mit Centriolen von Centrosomen oder Centrosomen-verwandten Strukturen assoziiert sind. Im Rahmen der vorliegenden Dissertation wurden die vier Centrin-Isoformen bezüglich der Expression in verschiedenen Geweben untersucht. Dabei lag der Hauptfokus auf Untersuchungen der Centrine in den Photorezeptorzellen der Retina. Analysen auf subzellulärer Ebene brachten Klarheit über die differenzielle Lokalisation der verschiedenen Isoformen in der Retina. Mit Hilfe von verschiedenen Methoden konnten Wechselwirkungspartner in der Retina identifiziert werden, die eine Rolle in der visuellen Signaltransduktionskaskade spielen. Dabei könnten Centrine einem Regelmechanismus angehören, der wichtige Translokationsprozesse dieser Proteine regelt. In den Photorezeptorzellen der Säugetierretina werden die vier Isoformen exprimiert, die in den Strukturen des Cilienapparates differenziell lokalisiert sind. Dabei beschränkt sich ihre Lokalisation entweder auf den Basalkörper (Centrin 4), auf das Verbindungscilium (Centrin 1) oder sie sind in beiden Strukturen zu finden (Centrin 2 und 3). In den nicht- Photorezeptorzellen der Retina sind die Isoformen Centrin 2 und 3 zudem an den Centriolen der Centrosomen lokalisiert. In der vorliegenden Arbeit wurde zum ersten Mal gezeigt, dass alle Centrin-Isoformen in ein und derselben Zelle, der Photorezeptorzelle, koexprimiert werden und dabei subzellulär kolokalisiert sind. Im Weiteren konnte die ubiquitäre Expression von Centrin 2 und 3 in allen untersuchten Geweben an Centrosomen bestätigt werden. Centrin 1 und 4 hingegen werden nur in Geweben mit Cilien-tragenden Zellen exprimiert. Die Funktion der Centrine wird nicht nur durch Bindung von Ca2+, sondern auch durch Phosphorylierungen reguliert. Alle Sequenzen der Centrine weisen diverse mögliche Phosphorylierungsstellen für unterschiedliche Proteinkinasen auf. Die Ergebnisse aller durchgeführten in vitro und ex vivo Phosphorylierungs „Assays“ zeigen eine licht-abhängige Phosphorylierung der Centrin-Isoformen in der Retina. Dabei war in der dunkel-adaptierten Retina die Phosphorylierung vor allem von Centrin 1 und 2 erhöht. Weiterführende Experimente mit Kinase-Inhibitoren wiesen darauf hin, dass vor allem die Proteinkinase CKII eine bedeutende Rolle bei der Centrin-Phosphorylierung in der Retina einnimmt. Centrine sind die ersten Cytoskelettkomponenten, deren Phosphorylierungsgrad lichtabhängig moduliert wird. Diese Ergebnisse weisen auf einen Signalweg, der zwischen der visuellen Signaltransduktionskaskade und der Regulation der Centrin-Aktivität vermittelt, hin. Bei der Suche nach Centrin-Bindungspartnern gelang mit Hilfe von Centrin 1 Blot „Overlay Assays“ der Durchbruch. Der neuartige Ansatz zeigte, dass ausschließlich Ca2+-aktiviertes Centrin 1 mit Proteinen aus der Retina interagierte. Nach der Identifikation eines 37 kDa-Proteins als die β-Untereinheit des visuellen G-Proteins Transducin wurden die Untersuchungen auf diesen Interaktionspartner fokussiert. Die Ergebnisse der hier durchgeführten biochemischen und biophysikalischen Protein-Protein Interaktionsexperimente zeigen insgesamt folgendes: ⇒ Alle vier Centrine interagieren mit Transducin, wobei Centrin 3 die geringste Affinität zu Transducin hat. ⇒ Die Assemblierung der Centrin•G-Protein-Komplexe ist strikt Ca2+-abhängig. ⇒ Die Centrine binden sowohl an das isolierte Gtβγ-Heterodimer als auch an den heterotrimeren Gt-holo-Proteinkomplex, nicht aber an Gtα. Die quantitativen immunoelektronenmikroskopischen Analysen zeigen im Weiteren, dass sich die Komplexe aus Transducin und Centrin 1 bis 3 wahrscheinlich in einer Subdomäne des Verbindungsciliums der Photorezeptorzellen ausbilden. Dabei dürfte die Ausbildung der Komplexe an der Regulation der lichtinduzierten Translokation von Transducin zwischen Innen- und Außensegment der Photorezeptorzellen beteiligt sein. Dieser Translokationsmechanismus wird als ein wichtiger Bestandteil der Langzeitadaption der Signaltransduktionskaskade der Säugerretina diskutiert. Der neuartige Regelmechanismus der molekularen Translokationen, in dem Centrine involviert sind, ist außergewöhnlich und dürfte über die speziellen Photorezeptorzellen hinaus von weit reichender Bedeutung sein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Alzheimer Krankheit ist eine fortschreitendende Demenzerkrankung von der in Deutschland ca. 1,6 Millionen Menschen betroffen sind. Im Gehirn der Patienten finden sich sogenannte amyloide Plaques, deren Hauptbestandteil das Aβ-Protein ist. Dieses Peptid ist ein Spaltprodukt des APP-Proteins (engl. amyloid precursor protein). APP ist das namensgebende Mitglied der APP-Proteinfamilie zu der neben APP die beiden APP-Homologen APLP1 und APLP2 (engl. amyloid precursor like protein) gehören. Obwohl inzwischen über die pathologische Rolle dieser Proteinfamilie bei der Alzheimer Krankheit vieles bekannt ist, bleiben die physiologischen Funktionen dieser Proteine bisher größtenteils ungeklärt. Die vorliegende Arbeit beschreibt erstmals einen APLP1-spezifischen Effekt auf die Ausbildung von Filopodien. Sowohl das humane als auch das murine APLP1 induzierten nach transienter Überexpression die Bildung zahlreicher filopodialer Fortsätze auf der Membran von PC12-Zellen. Vergleichbare Resultate konnten mit beiden APLP1-Proteinen auch auf der Membran von embryonalen (E18.5), cortikalen Neuronen der Ratte gezeigt werden. Dass APLP1 einen derartigen Effekt auf Neuronen und PC12-Zellen zeigt, begründet die Annahme, dass APLP1 in vivo eine Funktion bei der Entwicklung und Differenzierung von Neuronen übernimmt. Anhand von Versuchen mit deletierten APLP1-Proteinen und APLP1/APLP2-Chimärproteinen konnte gezeigt werden, dass die von Exon 5 und Exon 6 codierten Bereiche des APLP1 für die Induktion der Filopodien essentiell sind. Unter Einbeziehung von in ihrer räumlichen Struktur bereits bekannten Domänen und aufgrund von Homologievergleichen der primären Aminosäuresequenz dieser Region mit entsprechenden Bereichen der APP- bzw. APLP2-Proteine wurde die wahrscheinliche Lage der Filopodien-induzierenden Domäne innerhalb des von Exon 6 codierten Bereiches diskutiert. Es konnte ferner gezeigt werden, dass die untersuchte Induktion von Filopodien durch die sogenannte α-Sekretierung moduliert werden kann. Unter den gewählten Versuchsbedingungen war nur membranständiges APLP1, nicht aber sekretiertes APLP1 in der Lage, Filopodien zu induzieren. Abschliessend wurden Ergebnisse gezeigt, die erste Einblicke in Signalkaskaden erlauben, die von APLP1 angesteuert werden und so die Enstehung der Filopodien auslösen. Bezüglich des primären Prozesses der Signalkaskade, der Bindung von APLP1 an einen bisher unbekannten Rezeptor, wurde die Möglichkeit diskutiert, ob APP oder APLP2 oder sogar APLP1 selbst als Rezeptor fungieren könnten. Die beobachteten Prozesse nach Überexpression von APLP1 entsprechen vermutlich einer physiologischen Funktion bei der Differenzierung von Neuronen, die mit der Interaktion einer extrazellulär gelegenen Domäne mit einem Rezeptor beginnt, die Aktivierung einer Signalkaskade zur Akrinreorganisation zu Folge hat und die Entstehung filopodialer Strukturen auslöst.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Centrine sind kleine Ca2+-bindende Proteine aus der Familie der EF-Hand Proteine. Erstmals wurden Centrine als Hauptbestandteil der kontraktilen Flagellenwurzeln von Grünalgen beschrieben. Mittlerweile konnten Centrine in nahezu allen eukaryotischen Organismen nachgewiesen werden. In Säugetieren wurden bis zu vier Isoformen identifiziert, die an Centrosomen oder davon abgeleiteten Strukturen, wie Spindelpolkörpern und Basalkörper, aber auch in Übergangszonen von Cilien exprimiert werden. In der vorliegenden Arbeit konnte gezeigt werden, dass die Centrine im zellulären Kontext der Photorezeptorzellen nicht nur durch die Bindung von Ca2+ reguliert werden, sondern auch durch reversible Phosphorylierungen. Die Phosphorylierung der Centrin-Isoformen findet in der Retina von Vertebraten lichtabhängig während der Dunkeladaption statt. Die Protein Kinase CK2 (CK2) ist für die beschriebenen lichtabhängigen Phosphorylierungen hauptverantwortlich. Obwohl alle Centrin-Isoformen mehrere mögliche Zielsequenzen für die CK2 besitzen, kommt es nur zur Phosphorylierung einer einzigen Aminosäure in Cen1p, Cen2p und Cen4p. Im Gegensatz dazu stellt die Isoform Cen3p kein Substrat für die CK2 dar. Zudem wurden hier erstmals Phosphatasen identifiziert, die in der Lage sind Centrine zu dephosphorylieren. Die Dephosphorylierung durch die PP2Cund PP2C ist sehr spezifisch, da keine andere Phosphatase der Retina die CK2-vermittelte Phosphorylierung der Centrine rückgängig machen kann. Hoch auflösende licht- und elektronenmikroskopische Analysen zeigten erstmals, dass die Centrine sowohl mit der CK2 als auch mit der PP2C im Verbindungscilium der Photorezeptorzellen colokalisiert sind. Cen1p und CK2 sind in der Lage, direkt an Mikrotubuli zu binden, was die notwendige räumliche Nähe zwischen Enzymen und Substrat herstellt. Bisherige Arbeiten zeigten, dass alle Centrine Ca2+-abhängig mit dem visuellen G-Protein Transducin interagieren. Diese Wechselwirkung dürfte an der Regulation der lichtabhängigen Translokation des visuellen G-Proteins Transducin zwischen dem Außen- und dem Innensegment der Photorezeptorzelle beteiligt sein. In der vorliegenden Arbeit zeigten Interaktionsstudien, dass die Bindungsaffinitäten der Centrine für Transducin durch die CK2-vermittelte Phosphorylierung drastisch verringert wurden. Dieser beobachtete Effekt beruht auf deutlich verringerten Ca2+-Affinitäten der Centrin-Isoformen nach der CK2-vermittelten Phosphorylierung. In der vorliegenden Arbeit wurde ein neuartiger Regulationsmechanismus der Centrine in den Photorezeptorzellen der Vertebraten beschrieben. Centrine werden nicht nur durch Ca2+-Bindung zur Bildung von Protein Komplexen stimuliert, sondern durch die Phosphorylierung zum Auflösen dieser Komplexe angeregt. Damit reguliert die CK2-vermittelte, lichtabhängige Phosphorylierung der Centrine möglicherweise ebenfalls die adaptive Translokation des visuellen G-Proteins Transducin zwischen dem Außen- und Innensegment der Photorezeptorzellen.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Membrane proteins play an indispensable role in physiological processes. It is, therefore, not surprising that many diseases are based on the malfunction of membrane proteins. Hence membrane proteins and especially G-protein coupled receptors(GPCRs)- the largest subfamily- have become an important drug target. Due to their high selectivity and sensitivity membrane proteins are also feasible for the detection of small quantities of substances with biosensors. Despite this widespread interest in GPCRs due to their importance as drug targets and biosensors there is still a lack of knowledge of structure, function and endogenous ligands for quiet a few of the previously identified receptors.rnBottlenecks in over-expression, purification, reconstitution and handling of membrane proteins arise due to their hydrophobic nature. Therefore the production of reasonable amounts of functional membrane proteins for structural and functional studies is still challenging. Also the limited stability of lipid based membrane systems hampers their application as platforms forrnscreening applications and biosensors.rnIn recent years the in vitro protein synthesis became a promising alternative to gain better yields for expression of membrane proteins in bio-mimetic membrane systems. These expression systems are based on cell extracts. Therefore cellular effects on protein expression are reduced. The open nature of the cell-free expression systems easily allows for the adjustment of reactionrnconditions for the protein of interest. The cell-free expression in the presence of bio-mimetic membrane systems allows the direct incorporation of the membrane proteins and therefore skips the time-consuming purification and reconstitution processes. Amphiphilic block-copolymers emerged as promising alternative for the less stable lipid-based membrane systems. They, likernlipids, form membraneous structures in aqueous solutions but exhibit increased mechanical and chemical stability.rnThe aim of this work was the generation of a GPCR-functionalised membrane system by combining both promising alternatives: in vitro synthesis and polymeric membrane systems. This novel platform should be feasible for the characterisation of the incorporated GPCR. Immunodetection of Dopamine receptor 1 and 2 expressed in diblock- and triblock-polymersomes demonstrated the successful in vitro expression of GPCRs in polymeric membranes. Antibodyrnbinding studies suggested a favoured orientation of dopamine receptors in triblockpolymersomes.rnA dopamine-replacement assay on DRD2-functionalised immobilised triblockpolymersomes confirmed functionality of the receptor in the polymersomes. The altered binding curve suggests an effect of the altered hydrophobic environment presented by the polymer membrane on protein activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The multiligand Receptor for Advanced Glycation End products (RAGE) is involved in various pathophysiological processes, including diabetic inflammatory conditions and Alzheimers disease. Full-length RAGE, a cell surface-located type I membrane protein, can proteolytically be converted by metalloproteinases ADAM10 and MMP9 into a soluble RAGE form. Moreover, administration of recombinant soluble RAGE suppresses activation of cell surface-located RAGE by trapping RAGE ligands. Therefore stimulation of RAGE shedding might have a therapeutic value regarding inflammatory diseases. We aimed to investigate whether RAGE shedding is inducible via ligand-induced activation of G protein-coupled receptors (GPCRs). We chose three different GPCRs coupled to distinct signaling cascades: the V2 vasopressin receptor (V2R) activating adenylyl cyclase, the oxytocin receptor (OTR) linked to phospholipase Cβ, and the PACAP receptor (subtype PAC1) coupled to adenylyl cyclase, phospholipase Cβ, calcium signaling and MAP kinases. We generated HEK cell lines stably coexpressing an individual GPCR and full-length RAGE and then investigated GPCR ligand-induced activation of RAGE shedding. We found metalloproteinase-mediated RAGE shedding on the cell surface to be inducible via ligand-specific activation of all analyzed GPCRs. By using specific inhibitors we have identified Ca2+ signaling, PKCα/PKCβI, CaMKII, PI3 kinases and MAP kinases to be involved in PAC1 receptor-induced RAGE shedding. We detected an induction of calcium signaling in all our cell lines coexpressing RAGE and different GPCRs after agonist treatment. However, we did not disclose a contribution of adenylyl cyclase in RAGE shedding induction. Furthermore, by using a selective metalloproteinase inhibitor and siRNAmediated knock-down approaches, we show that ADAM10 and/or MMP9 are playing important roles in constitutive and PACAP-induced RAGE shedding. We also found that treatment of mice with PACAP increases the amount of soluble RAGE in the mouse lung. Our findings suggest that pharmacological stimulation of RAGE shedding might open alternative treatment strategies for Alzheimers disease and diabetes-induced inflammation.