4 resultados para Functional Systems Theory
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Functional materials have great importance due to their many important applications. The characterization of supramolecular architectures which are held together by non-covalent interactions is of most importance to understand their properties. Solid-state NMR methods have recently been proven to be able to unravel such structure-property relations with the help of fast magic-angle spinning and advanced pulse sequences. The aim of the current work is to understand the structure and dynamics of functional supramolecular materials which are potentially important for fuel-cell (proton conducting membrane materials) and solar-cell or plastic-electronic applications (photo-reactive aromatic materials). In particular, hydrogen-bonding networks, local proton mobility, molecular packing arrangements, and local dynamics will be studied by the use of advanced solid-state NMR methods. The first class of materials studied in this work is proton conducting polymers which also form hydrogen-bonding network. Different materials, which are prepared for high 1H conduction by different approaches are studied: PAA-P4VP, PVPA-ABPBI, Tz5Si, and Triazole-functional systems. The materials are examples of the following major groups; - Homopolymers with specific functional groups (Triazole functional polysiloxanes). - Acid-base polymer blends approach (PAA-P4VP, PVPA-ABPBI). - Acid-base copolymer approach (Triazole-PVPA). - Acid doped polymers (Triazole functional polymer doped with H3PO4). Perylenebisimide (PBI) derivatives, a second type of important functional supramolecular materials with potent applications in plastic electronics, were also investigated by means of solid-state NMR. The preparation of conducting nanoscopic fibers based on the self-assembling functional units is an appealing aim as they may be incorporated in molecular electronic devices. In this category, perylene derivatives have attracted great attention due to their high charge carrier mobility. A detailed knowledge about their supramolecular structure and molecular dynamics is crucial for the understanding of their electronic properties. The aim is to understand the structure, dynamics and packing arrangements which lead to high electron conductivity in PBI derivatives.
Resumo:
Form und Gestalt kraniofazialer Strukturen sind primär beeinflusst durch die inhärente Integration der unterschiedlichsten Funktionssysteme und externer selektiver Einflüsse. Die Variabilität der Schädel-Morphe ist ein Indikator für solche Einflussfaktoren und damit ein idealer Gegenstand für vergleichende Analysen morphogenetischer Formbildung. Zur Ermittlung morphologisch-adaptiver Trends und Muster wurden sowohl Hypothesen zur morphologischen Differenziertheit als auch zu Korrelationen zwischen modularen Schädelkompartimenten (fazial, neurokranial, basikranial) untersucht. Zusätzlich wurden aus Schichtröntgenaufnahmen (CT) virtuelle Modelle rekonstruiert, welche die Interpretation der statistischen Befunde unterstützen sollten. Zur Berechnung der Gestaltunterschiede wurden mittels eines mechanischen Gelenkarm-Messgerätes (MicroScribe-G2) max. 85 ektokraniale Messpunkte (Landmarks) bzw. dreidimensionale Koordinaten an ca. 520 Schädeln von fünf rezenten Gattungen der Überfamilie Hominoidea (Hylobates, Pongo, Gorilla, Pan und Homo) akquiriert. Aus dem Datensatz wurden geometrische Störfaktoren (Größe, Translation, Rotation) mathematisch eliminiert und die verbleibenden Residuale bzw. ‚Gestalt-Variablen‘ diversen multivariat-statistischen Verfahren unterzogen (Faktoren, Cluster-, Regressions- und Korrelationsanalysen sowie statistische Tests). Die angewandten Methoden erhalten die geometrische Information der Untersuchungsobjekte über alle Analyseschritte hinweg und werden unter der Bezeichnung „Geometric Morphometrics (GMM)“ als aktueller Ansatz der Morphometrie zusammengefasst. Für die unterschiedlichen Fragestellungen wurden spezifische Datensätze generiert. Es konnten diverse morphologische Trends und adaptive Muster mit Hilfe der Synthese statistischer Methoden und computer-basierter Rekonstruktionen aus den generierten Datensätzen ermittelt werden. Außerdem war es möglich, präzise zu rekonstruieren, welche kranialen Strukturen innerhalb der Stichprobe miteinander wechselwirken, einzigartige Variabilitäten repräsentieren oder eher homogen gestaltet sind. Die vorliegenden Befunde lassen erkennen, dass Fazial- und Neurokranium am stärksten miteinander korrelieren, während das Basikranium geringe Abhängigkeiten in Bezug auf Gesichts- oder Hirnschädelveränderungen zeigte. Das Basikranium erweist sich zudem bei den nicht-menschlichen Hominoidea und über alle Analysen hinweg als konservative und evolutiv-persistente Struktur mit dem geringsten Veränderungs-Potential. Juvenile Individuen zeigen eine hohe Affinität zueinander und zu Formen mit einem kleinem Gesichts- und großem Hirnschädel. Während das Kranium des rezenten Menschen primär von Enkephalisation und fazialer Retraktion (Orthognathisierung) dominiert ist und somit eine einzigartige Gestalt aufweist, zeigt sich der Kauapparat als maßgeblich formbildendes Kompartiment bei den nicht-menschlichen Formen. Die Verbindung von GMM mit den interaktiven Möglichkeiten computergenerierter Modelle erwies sich als valides Werkzeug zur Erfassung der aufgeworfenen Fragestellungen. Die Interpretation der Befunde ist durch massive Interkorrelationen der untersuchten Strukturen und der statistisch-mathematischen Prozeduren als hoch komplex zu kennzeichnen. Die Studie präsentiert einen innovativen Ansatz der modernen Morphometrie, welcher für zukünftige Untersuchungen im Bereich der kraniofazialen Gestaltanalyse ausgebaut werden könnte. Dabei verspricht die Verknüpfung mit ‚klassischen’ und modernen Zugängen (z. B. Molekularbiologie) gesteigerte Erkenntnismöglichkeiten für künftige morphometrische Fragestellungen.
Resumo:
The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.
Resumo:
Computer simulations have become an important tool in physics. Especially systems in the solid state have been investigated extensively with the help of modern computational methods. This thesis focuses on the simulation of hydrogen-bonded systems, using quantum chemical methods combined with molecular dynamics (MD) simulations. MD simulations are carried out for investigating the energetics and structure of a system under conditions that include physical parameters such as temperature and pressure. Ab initio quantum chemical methods have proven to be capable of predicting spectroscopic quantities. The combination of these two features still represents a methodological challenge. Furthermore, conventional MD simulations consider the nuclei as classical particles. Not only motional effects, but also the quantum nature of the nuclei are expected to influence the properties of a molecular system. This work aims at a more realistic description of properties that are accessible via NMR experiments. With the help of the path integral formalism the quantum nature of the nuclei has been incorporated and its influence on the NMR parameters explored. The effect on both the NMR chemical shift and the Nuclear Quadrupole Coupling Constants (NQCC) is presented for intra- and intermolecular hydrogen bonds. The second part of this thesis presents the computation of electric field gradients within the Gaussian and Augmented Plane Waves (GAPW) framework, that allows for all-electron calculations in periodic systems. This recent development improves the accuracy of many calculations compared to the pseudopotential approximation, which treats the core electrons as part of an effective potential. In combination with MD simulations of water, the NMR longitudinal relaxation times for 17O and 2H have been obtained. The results show a considerable agreement with the experiment. Finally, an implementation of the calculation of the stress tensor into the quantum chemical program suite CP2K is presented. This enables MD simulations under constant pressure conditions, which is demonstrated with a series of liquid water simulations, that sheds light on the influence of the exchange-correlation functional used on the density of the simulated liquid.