3 resultados para Frequency Parameters

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evolutionary processes within the bird genus Certhia (treecreepers) are investigated and taxonomic uncertainties clarified. The original seven species of the genus have Holarctic distribution, are uniform morphologically and hence difficult to distinguish. I employed four methodological approaches. 1. Molecular phylogeny using the mitochondrial cytochrome-b gene largely established relationships and revealed two cryptic species. 2. Call and song recordings from all species and many subspecies were evaluated sonagraphically. The nine phylospecies outlined in Part 1 were clearly delimited from one another by time and frequency parameters. They comprise a monophyletic group of "motif singers" and a purely southeast Asian group of "trill singers". Song-character differences were generally consistent with molecular phylogeny (strong phylogenetic signals). 3. Central European Certhia familiaris in the field responded territorially to playback of verses of allopatric "motif singer" taxa, but usually more weakly than to their own subsequently presented songs. No song characters were unambiguously recognised as species-specific. 4. Standard body dimensions of nearly 2000 museum specimens characterise species and subspecies biometrically and reveal geographic trends. Lengths of bill and hind claw proved important parameters to explain the treecreeper lifestyle (climbing and feeding on tree trunks). In the Himalayas (highest species density) tail dimensions are also significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The standard model (SM) of particle physics is a theory, describing three out of four fundamental forces. In this model the Cabibbo-Kobayashi-Maskawa (CKM) matrix describes the transformation between the mass and weak eigenstates of quarks. The matrix properties can be visualized as triangles in the complex plane. A precise measurement of all triangle parameters can be used to verify the validity of the SM. The least precisely measured parameter of the triangle is related to the CKM element |Vtd|, accessible through the mixing frequency (oscillation) of neutral B mesons, where mixing is the transition of a neutral meson into its anti-particle and vice versa. It is possible to calculate the CKM element |Vtd| and a related element |Vts| by measuring the mass differences Dmd (Dms ) between neutral Bd and bar{Bd} (Bs and bar{Bs}) meson mass eigenstates. This measurement is accomplished by tagging the initial and final state of decaying B mesons and determining their lifetime. Currently the Fermilab Tevatron Collider (providing pbar{p} collisions at sqrt{s}=1.96 TeV) is the only place, where Bs oscillations can be studied. The first selection of the "golden", fully hadronic decay mode Bs->Ds pi(phi pi)X at DØ is presented in this thesis. All data, taken between April 2002 and August 2007 with the DØ detector, corresponding to an integrated luminosity of int{L}dt=2.8/fb is used. The oscillation frequency Dms and the ratio |Vtd|/|Vts| are determined as Dms = (16.6 +0.5-0.4(stat) +0.4-0.3(sys)) 1/ps, |Vtd|/|Vts| = 0.213 +0.004-0.003(exp)pm 0.008(theor). These results are consistent with the standard model expectations and no evidence for new physics is observable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electric dipole response of neutron-rich nickel isotopes has been investigated using the LAND setup at GSI in Darmstadt (Germany). Relativistic secondary beams of 56−57Ni and 67−72Ni at approximately 500 AMeV have been generated using projectile fragmentation of stable ions on a 4 g/cm2 Be target and subsequent separation in the magnetic dipole fields of the FRagment Separator (FRS). After reaching the LAND setup in Cave C, the radioactive ions were excited electromagnetically in the electric field of a Pb target. The decay products have been measured in inverse kinematics using various detectors. Neutron-rich 67−69Ni isotopes decay by the emission of neutrons, which are detected in the LAND detector. The present analysis concentrates on the (gamma,n) and (gamma,2n) channels in these nuclei, since the proton and three-neutron thresholds are unlikely to be reached considering the virtual photon spectrum for nickel ions at 500 AMeV. A measurement of the stable 58Ni isotope is used as a benchmark to check the accuracy of the present results with previously published data. The measured (gamma,n) and (gamma,np) channels are compared with an inclusive photoneutron measurement by Fultz and coworkers, which are consistent within the respective errors. The measured excitation energy distributions of 67−69Ni contain a large portion of the Giant Dipole Resonance (GDR) strength predicted by the Thomas-Reiche-Kuhn energy-weighted sum rule, as well as a significant amount of low-lying E1 strength, that cannot be attributed to the GDR alone. The GDR distribution parameters are calculated using well-established semi-empirical systematic models, providing the peak energies and widths. The GDR strength is extracted from the chi-square minimization of the model GDR to the measured data of the (gamma,2n) channel, thereby excluding any influence of eventual low-lying strength. The subtraction of the obtained GDR distribution from the total measured E1 strength provides the low-lying E1 strength distribution, which is attributed to the Pygmy Dipole Resonance (PDR). The extraction of the peak energy, width and strength is performed using a Gaussian function. The minimization of trial Gaussian distributions to the data does not converge towards a sharp minimum. Therefore, the results are presented by a chi-square distribution as a function of all three Gaussian parameters. Various predictions of PDR distributions exist, as well as a recent measurement of the 68Ni pygmy dipole-resonance obtained by virtual photon scattering, to which the present pygmy dipole-resonance distribution is also compared.