2 resultados para Fin whale -- Northeast Pacific Ocean
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die Isotopenzusammensetzungen des Pitcairn Hotspot (Südpazifik), des Mauna Kea (Hawaii) und der Insel Rurutu (Französisch Polynesien) wurden bestimmt, um Heterogenitäten im Erdmantel zu charakterisieren. Die Bleiisotopenzusammensetzung wurde mit einer Dreiisotopenspiketechnik zur Korrektur der instrumentellen Massenfraktionierung gemessen. An Proben von Pitcairn wurde zusätzlich die Os, Hf, Nd, Sr Isotopenzusammensetzung, sowie die Haupt- und Spurenelementzusammensetzung bestimmt. Die Isotopensignatur des Pitcairn Hotspots kann durch eine Sedimentkomponente in der Magmenquelle erklärt werden. Die Bleiisotopenschwankungen des Mauna Kea in der HSDP-2 Bohrung treten als Oszillationen auf, die sich zu linearen Anordnungen im Bleiisotopenraum zusammensetzen. Das begrenzte zeitliche Auftreten einer linearen Anordnung zeigt, daß die Heterogenitäten mehrere zehner Kilometer Länge im aufsteigenden Mantelmaterial unter dem Vulkan einnehmen. Auch die Bleiisotopenzusammensetzungen der Rurutu-laven zeigen lineare Anordnungen.Diese lineare Anordnungen im Bleiisotopenraum können durch eine vorwiegend binäre Mischung erklärt werden. Ein Bleiisotopenentwicklungsmodell unterstützt, daß die Differenzierung der Ausgangsmaterialien vor weniger als etwa zwei Milliarden Jahren geschah und für Mauna Kea relativ jung sein könnte. Keine der Hotspots weisen identische Mischungsendglieder auf, so daß die Heterogenitäten kleinräumige Merkmale im Erdmantel sind.
Resumo:
Ocean Island Basalts (OIB) provide important information on the chemical and physical characteristics of their mantle sources. However, the geochemical composition of a generated magma is significantly affected by partial melting and/or subsequent fractional crystallization processes. In addition, the isotopic composition of an ascending magma may be modified during transport through the oceanic crust. The influence of these different processes on the chemical and isotopic composition of OIB from two different localities, Hawaii and Tubuai in the Pacific Ocean, are investigated here. In a first chapter, the Os-isotope variations in suites of lavas from Kohala Volcano, Hawaii, are examined to constrain the role of melt/crust interactions on the evolution of these lavas. As 187Os/188Os sensitivity to any radiogenic contaminant strongly depend on the Os content in the melt, Os and other PGE variations are investigated first. This study reveals that Os and other PGE behavior change during the Hawaiian magma differentiation. While PGE concentrations are relatively constant in lavas with relatively primitive compositions, all PGE contents strongly decrease in the melt as it evolved through ~ 8% MgO. This likely reflects the sulfur saturation of the Hawaiian magma and the onset of sulfide fractionation at around 8% MgO. Kohala tholeiites with more than 8% MgO and rich in Os have homogeneous 187Os/188Os values likely to represent the mantle signature of Kohala lavas. However, Os isotopic ratios become more radiogenic with decreasing MgO and Os contents in the lavas, which reflects assimilation of local crust material during fractional crystallization processes. Less than 8% upper oceanic crust assimilation could have produced the most radiogenic Os-isotope ratios recorded in the shield lavas. However, these small amounts of upper crust assimilation have only negligible effects on Sr and Nd isotopic ratios and therefore, are not responsible for the Sr and Nd isotopic heterogeneities observed in Kohala lavas. In a second chapter, fractional crystallization and partial melting processes are constrained using major and trace element variations in the same suites of lavas from Kohala Volcano, Hawaii. This inverse modeling approach allows the estimation of most of the trace element composition of the Hawaiian mantle source. The calculated initial trace element pattern shows slight depletion of the concentrations from LREE to the most incompatible elements, which indicates that the incompatible element enrichments described by the Hawaiian melt patterns are entirely produced by partial melting processes. The “Kea trend” signature of lavas from Kohala Volcano is also confirmed, with Kohala lavas having lower Sr/Nd and La/Th ratios than lavas from Mauna Loa Volcano. Finally, the magmatic evolution of Tubuai Island is investigated in a last chapter using the trace element and Sr, Nd, Hf isotopic variations in mafic lava suites. The Sr, Nd and Hf isotopic data are homogeneous and typical for the HIMU-type OIB and confirms the cogenetic nature of the different mafic lavas from Tubuai Island. The trace element patterns show progressive enrichment of incompatible trace elements with increasing alkali content in the lavas, which reflect progressive decrease in the degree of partial melting towards the later volcanic events. In addition, this enrichment of incompatible trace elements is associated with relative depletion of Rb, Ba, K, Nb, Ta and Ti in the lavas, which require the presence of small amount of residual phlogopite and of a Ti-bearing phase (ilmenite or rutile) during formation of the younger analcitic and nephelinitic magmas.