2 resultados para Festes-Gandia
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Forschung über Membranenproteine stellt strenge Hindernisse, seit ruhigem gerade wenige Beispiele der Membranenproteinsorten sind gekennzeichnet worden in den verwendbaren experimentellen Plattformen gegenüber. Die Hauptherausforderung ist, ihre ausgezeichnete entworfene strukturelle Vollständigkeit zu konservieren, während die Ausdruck-, Lokalisierungs- und Wiederherstellungprozesse auftreten. In-vitro übersetzungssysteme können Vorteile über auf Zellenbasisgenausdruck zum Beispiel haben, wenn das über-ausgedrückte Produkt zur Wirtszelle giftig ist oder wenn fehlende Pfosten-Übersetzungsänderung in den bakteriellen Ausdrucksystemen die Funktionalität der Säugetier- Proteine oder Mangel an vorhandenem Membranenraum verdirbt, Funktionsausdruck verbieten.rn Der Nachahmer von biologische Membranen wie feste gestützte Lipidmembranen sind als Plattform am meisten benutzt, Proteinmembraneninteraktionen nachzuforschen. Wir sind in der Lage, Membranenproteinsorte, da wir eine Plattform für Membranenproteinsynthese vorstellen, nämlich die in-vitrosynthese der Membranenproteine in ein Peptid gestütztes Membranensystem zu adressieren. Die Wiederherstellung der Membranenproteine in den Lipid bilayers resultiert im Allgemeinen mit verschiedenen Proteinanpassungen. Als Alternative erforschen wir dieses System zum ersten Mal, um genaueres Modell zu den zellularen Membranen zu verursachen und ihre Funktion, wie Proteineinfügung, Proteinfunktion und Ligandinteraktionen nachzuahmen.rn In dieser Arbeit ist unser Ziel, komplizierte Transmembraneproteine, wie des Cytochrome bo3-ubiquinol Oxydase (Cyt-bo3) direkt innerhalb der biomimetic vorbildlichen Membrane zu synthetisieren. In unserem System wird festes gestütztes tBLM wie, P19/DMPE/PC als Plattform benutzt. Dieses künstliche Membranensystem mimiks die amphiphile Architektur eines Zelle-abgeleiteten Membranensystems.rn
Resumo:
Research in fundamental physics with the free neutron is one of the key tools for testing the Standard Model at low energies. Most prominent goals in this field are the search for a neutron electric dipole moment (EDM) and the measurement of the neutron lifetime. Significant improvements of the experimental performance using ultracold neutrons (UCN) require reduction of both systematic and statistical errors.rnThe development and construction of new UCN sources based on the superthermal concept is therefore an important step for the success of future fundamental physics with ultracold neutrons. rnSignificant enhancement of today available UCN densities strongly correlates with an efficient use of an UCN converter material. The UCN converter here is to be understood as a medium which reduces the velocity of cold neutrons (CN, velocity of about 600 m/s) to the velocity of UCN (velocity of about 6 m/s).rnSeveral big research centers around the world are presently planning or constructing new superthermal UCN sources, which are mainly based on the use of either solid deuterium or superfluid helium as UCN converter.rnThanks to the idea of Yu.Pokotilovsky, there exists the opportunity to build competitive UCN sources also at small research reactors of the TRIGA type. Of course these smaller facilities don't promise high UCN densities of several 1000 UCN/cm³, but they are able to provide densities around 100 UCN/cm³ for experiments.rnIn the context of this thesis, it was possible to demonstrate succesfully the feasibility of a superthermal UCN source at the tangential beamport C of the research reactor TRIGA Mainz. Based on a prototype for the future UCN source at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII) in munich, which was planned and built in collaboration with the Technical University of Munich, further investigations and improvements were done and are presented in this thesis. rnIn parallel, a second UCN source for the radial beamport D was designed and built. The comissioning of this new source is foreseen in spring 2010.rnAt beamport D with its higher thermal neutron flux, it should be possible to increase the available UCN densities of 4 UCN/cm³ by minimum one order of magnitude.