3 resultados para Federal aid to juvenile corrections
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Wir betrachten die eindimensionale Heisenberg-Spinkette aus einem neuen und aktuelleren Blickwinkel. Experimentelle Techniken der Herstellung und selbstverständlich auch experimentelle Meßmethoden erlauben nicht nur die Herstellung von Nanopartikeln und Nanodrähten, sondern gestatten es auch, Domänenwände in diesen Strukturen auszumessen. Die meisten heute verwendeten Theorien und Simulationsmethoden haben ihre Grundlage im mikromagnetischen Kontinuumsmodell, daß schon über Jahrzehnte hinweg erforscht und erprobt ist. Wir stellen uns jedoch die Frage, ob die innere diskrete Struktur der Substrate und die quantenmechanischen Effekte bei der Genauigkeit heutiger Messungen in Betracht gezogen werden müssen. Dazu wählen wir einen anderen Ansatz. Wir werden zunächst den wohlbekannten klassischen Fall erweitern, indem wir die diskrete Struktur der Materie in unseren Berechnungen berücksichtigen. Man findet in diesem Formalismus einen strukturellen Phasenübergang zwischen einer Ising-artigen und einer ausgedehnten Wand. Das führt zu bestimmten Korrekturen im Vergleich zum Kontinuumsfall. Der Hauptteil dieser Arbeit wird sich dann mit dem quantenmechanischen Fall beschäftigen. Wir rotieren das System zunächst mit einer Reihe lokaler Transformationen derart, daß alle Spins in die z-Richtung ausgerichtet sind. Im Rahmen einer 1/S-Entwicklung läßt sich der erhaltene neue Hamilton-Operator diagonalisieren. Setzt man hier die klassische Lösung ein, so erhält man Anregungsmoden in diesem Grenzfall. Unsere Resultate erweitern und bestätigen frühere Berechnungen. Mit Hilfe der Numerik wird schließlich der Erwartungswert der Energie minimiert und somit die Form der Domänenwand im quantenmechanischen Fall berechnet. Hieraus ergeben sich auch bestimmte Korrekturen zum kritischen Verhalten des Systems. Diese Ergebnisse sind vollkommen neu.
Resumo:
Zerebrale Erkrankungen, wie Schädelhirntrauma (SHT) und Subarachnoidalblutung (SAB) sind mit einer hohen Morbidität und Mortalität vergesellschaftet und stellen eine ernsthafte medizinische und ökonomische Herausforderung dar. Grundlage für die Entwicklung neuer effektiver Therapieansätze ist das Verständnis der pathophysiologischen Mechanismen dieser Krankheiten. Das Entstehen eines vasogenen Hirnödems ist eine schwere Komplikation nach SHT und SAB und beruht u.a. auf einem Öffnen der Bluthirnschranke (BHS). Ein möglicher zu Grunde liegender Mechanismus könnte die Aktivierung der Myosin-leichte-Kette-Kinase (MLCK) sein, was man therapeutisch unterbinden könnte.rnIn der vorliegenden Studie wurde in zwei unterschiedlichen experimentellen, zerebralen Schadensmodellen der Einfluss des kontraktilen Apparates auf die BHS Störung untersucht. In dem Schadensmodell des SHT sind die Hauptergebnisse: 1.) die Myosin-leichte-Kette-Kinase (MLCK) wird durch das induzierte Schädelhirntrauma hochreguliert. 2.) eine pharmakologische MLCK Inhibition stabilisiert die BHS, senkt den ICP und das Hirnödem nach experimentellen SHT. 3.) die MLCK Inhibition führte nicht zu einer Verbesserung des Hirnschadens, der neurologischen Funktion oder der zerebralen Inflammation 24 Stunden nach SHT, obwohl angenommen wird, dass die Entstehung eines Hirnödems den sekundären Hirnschaden vergrößert. In einer weitern Studie wurde untersucht, durch welchen Signalweg dieser zugrunde liegende Mechanismus aktiviert wird. In einem in-vitro BHS Model konnte gezeigt werden, dass C-reaktives Protein (CRP) über die Bindung an Fcγ-Rezeptoren den kontraktilen Apparat aktiviert und somit zu einem Öffnen der BHS führt. Obwohl der CRP Plasmaspiegel nach experimentellen SHT ansteigt, kommt es nicht zu einer Verringerungrndes Hirnwassergehaltes in FcγR-/- Mäusen. Die Entstehung des vasogenen Hirnödems wird im murinen CCI Model somit nicht über den Fcγ-Rezeptor vermittelt. Die in-vitro gezeigte Fcγ vermittelte Öffnung der BHS konnte in-vivo in dieser Studie nicht reproduziert werden. Mit der vorliegenden Studie kann nicht ausgeschlossen werden, dass CRP über einen Fcγ unabhängigen Mechanismus eine Öffnung der BHS vermittelt. Jedoch deuten die Daten daraufhin, das CRP im murinen CCI Model eine untergeordnete Rolle spielt. Die FcγR-/- Mäuse zeigten allerdings ein deutlich reduziertes Kontusionsvolumen und eine reduzierte Mikroglia Aktivierung, was darauf hindeutet, dass FcγR eine wesentliche Rolle bei der zerebralen Inflammation spielen.rnIn dem Schadensmodell der experimentellen SAB konnte gezeigt werden, dass die Inhibition der MLCK die Folgen einer SAB mindert. Sie führt zu einer Senkung des Hirnödems, des intrakraniellen Drucks und Verbesserung der neurologischen Erholung nach experimenteller SAB. Die Ergebnisse unterstützen die Hypothese, dass die MLCK einer der Endpunkteffektor für verschiedene Mechanismen ist, welche die endotheliale Permeabilität sowohl nach SHT als auch nach SAB erhöhen.rnZusammenfassend lässt sich feststellen, dass in beiden zerebralen experimentellen Insulten die MLCK eine wichtige Rolle beim BHS Versagen spielt. Die Daten tragen dazu bei, den zugrundeliegenden Mechanismus der BHS Öffnung, der durch eine Aktivierung der MLCK hervorgerufen werden könnte, besser zu verstehen. Dies könnte zu Entwicklung neuer Medikamente für eine Therapie des zerebralen Hirnödems führen.
Resumo:
In this thesis we investigate several phenomenologically important properties of top-quark pair production at hadron colliders. We calculate double differential cross sections in two different kinematical setups, pair invariant-mass (PIM) and single-particle inclusive (1PI) kinematics. In pair invariant-mass kinematics we are able to present results for the double differential cross section with respect to the invariant mass of the top-quark pair and the top-quark scattering angle. Working in the threshold region, where the pair invariant mass M is close to the partonic center-of-mass energy sqrt{hat{s}}, we are able to factorize the partonic cross section into different energy regions. We use renormalization-group (RG) methods to resum large threshold logarithms to next-to-next-to-leading-logarithmic (NNLL) accuracy. On a technical level this is done using effective field theories, such as heavy-quark effective theory (HQET) and soft-collinear effective theory (SCET). The same techniques are applied when working in 1PI kinematics, leading to a calculation of the double differential cross section with respect to transverse-momentum pT and the rapidity of the top quark. We restrict the phase-space such that only soft emission of gluons is possible, and perform a NNLL resummation of threshold logarithms. The obtained analytical expressions enable us to precisely predict several observables, and a substantial part of this thesis is devoted to their detailed phenomenological analysis. Matching our results in the threshold regions to the exact ones at next-to-leading order (NLO) in fixed-order perturbation theory, allows us to make predictions at NLO+NNLL order in RG-improved, and at approximate next-to-next-to-leading order (NNLO) in fixed order perturbation theory. We give numerical results for the invariant mass distribution of the top-quark pair, and for the top-quark transverse-momentum and rapidity spectrum. We predict the total cross section, separately for both kinematics. Using these results, we analyze subleading contributions to the total cross section in 1PI and PIM originating from power corrections to the leading terms in the threshold expansions, and compare them to previous approaches. We later combine our PIM and 1PI results for the total cross section, this way eliminating uncertainties due to these corrections. The combined predictions for the total cross section are presented as a function of the top-quark mass in the pole, the minimal-subtraction (MS), and the 1S mass scheme. In addition, we calculate the forward-backward (FB) asymmetry at the Tevatron in the laboratory, and in the ttbar rest frames as a function of the rapidity and the invariant mass of the top-quark pair at NLO+NNLL. We also give binned results for the asymmetry as a function of the invariant mass and the rapidity difference of the ttbar pair, and compare those to recent measurements. As a last application we calculate the charge asymmetry at the LHC as a function of a lower rapidity cut-off for the top and anti-top quarks.