3 resultados para Feature Descriptors

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data sets describing the state of the earth's atmosphere are of great importance in the atmospheric sciences. Over the last decades, the quality and sheer amount of the available data increased significantly, resulting in a rising demand for new tools capable of handling and analysing these large, multidimensional sets of atmospheric data. The interdisciplinary work presented in this thesis covers the development and the application of practical software tools and efficient algorithms from the field of computer science, aiming at the goal of enabling atmospheric scientists to analyse and to gain new insights from these large data sets. For this purpose, our tools combine novel techniques with well-established methods from different areas such as scientific visualization and data segmentation. In this thesis, three practical tools are presented. Two of these tools are software systems (Insight and IWAL) for different types of processing and interactive visualization of data, the third tool is an efficient algorithm for data segmentation implemented as part of Insight.Insight is a toolkit for the interactive, three-dimensional visualization and processing of large sets of atmospheric data, originally developed as a testing environment for the novel segmentation algorithm. It provides a dynamic system for combining at runtime data from different sources, a variety of different data processing algorithms, and several visualization techniques. Its modular architecture and flexible scripting support led to additional applications of the software, from which two examples are presented: the usage of Insight as a WMS (web map service) server, and the automatic production of a sequence of images for the visualization of cyclone simulations. The core application of Insight is the provision of the novel segmentation algorithm for the efficient detection and tracking of 3D features in large sets of atmospheric data, as well as for the precise localization of the occurring genesis, lysis, merging and splitting events. Data segmentation usually leads to a significant reduction of the size of the considered data. This enables a practical visualization of the data, statistical analyses of the features and their events, and the manual or automatic detection of interesting situations for subsequent detailed investigation. The concepts of the novel algorithm, its technical realization, and several extensions for avoiding under- and over-segmentation are discussed. As example applications, this thesis covers the setup and the results of the segmentation of upper-tropospheric jet streams and cyclones as full 3D objects. Finally, IWAL is presented, which is a web application for providing an easy interactive access to meteorological data visualizations, primarily aimed at students. As a web application, the needs to retrieve all input data sets and to install and handle complex visualization tools on a local machine are avoided. The main challenge in the provision of customizable visualizations to large numbers of simultaneous users was to find an acceptable trade-off between the available visualization options and the performance of the application. Besides the implementational details, benchmarks and the results of a user survey are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Materialverfolgung gewinnt in der Metallindustrie immer mehr an Bedeutung:rnEs ist notwendig, dass ein Metallband im Fertigungsprozess ein festgelegtes Programm durchläuft - erst dann ist die Qualität des Endprodukts garantiert. Die bisherige Praxis besteht darin, jedem Metallband eine Nummer zuzuordnen, mit der dieses Band beschriftet wird. Bei einer tagelangen Lagerung der Bänder zwischen zwei Produktionsschritten erweist sich diese Methode als fehleranfällig: Die Beschriftungen können z.B. verloren gehen, verwechselt, falsch ausgelesen oder unleserlich werden. 2007 meldete die iba AG das Patent zur Identifikation der Metallbänder anhand ihres Dickenprofils an (Anhaus [3]) - damit kann die Identität des Metallbandes zweifelsfrei nachgewiesen werden, eine zuverlässige Materialverfolgung wurde möglich.Es stellte sich jedoch heraus, dass die messfehlerbehafteten Dickenprofile, die als lange Zeitreihen aufgefasst werden können, mit Hilfe von bisherigen Verfahren (z.B. L2-Abstandsminimierung oder Dynamic Time Warping) nicht erfolgreich verglichen werden können.Diese Arbeit stellt einen effizienten feature-basierten Algorithmus zum Vergleichrnzweier Zeitreihen vor. Er ist sowohl robust gegenüber Rauschen und Messausfällen als auch invariant gegenüber solchen Koordinatentransformationen der Zeitreihen wie Skalierung und Translation. Des Weiteren sind auch Vergleiche mit Teilzeitreihen möglich. Unser Framework zeichnet sich sowohl durch seine hohe Genauigkeit als auch durch seine hohe Geschwindigkeit aus: Mehr als 99.5% der Anfragen an unsere aus realen Profilen bestehende Testdatenbank werden richtig beantwortet. Mit mehreren hundert Zeitreihen-Vergleichen pro Sekunde ist es etwa um den Faktor 10 schneller als die auf dem Gebiet der Zeitreihenanalyse etablierten Verfahren, die jedoch nicht im Stande sind, mehr als 90% der Anfragen korrekt zu verarbeiten. Der Algorithmus hat sich als industrietauglich erwiesen. Die iba AG setzt ihn in einem weltweit einzigartigen dickenprofilbasierten Überwachungssystemrnzur Materialverfolgung ein, das in ersten Stahl- und Aluminiumwalzwerkenrnbereits erfolgreich zum Einsatz kommt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analyzing and modeling relationships between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects in chemical datasets is a challenging task for scientific researchers in the field of cheminformatics. Therefore, (Q)SAR model validation is essential to ensure future model predictivity on unseen compounds. Proper validation is also one of the requirements of regulatory authorities in order to approve its use in real-world scenarios as an alternative testing method. However, at the same time, the question of how to validate a (Q)SAR model is still under discussion. In this work, we empirically compare a k-fold cross-validation with external test set validation. The introduced workflow allows to apply the built and validated models to large amounts of unseen data, and to compare the performance of the different validation approaches. Our experimental results indicate that cross-validation produces (Q)SAR models with higher predictivity than external test set validation and reduces the variance of the results. Statistical validation is important to evaluate the performance of (Q)SAR models, but does not support the user in better understanding the properties of the model or the underlying correlations. We present the 3D molecular viewer CheS-Mapper (Chemical Space Mapper) that arranges compounds in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kinds of features, like structural fragments as well as quantitative chemical descriptors. Comprehensive functionalities including clustering, alignment of compounds according to their 3D structure, and feature highlighting aid the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. Even though visualization tools for analyzing (Q)SAR information in small molecule datasets exist, integrated visualization methods that allows for the investigation of model validation results are still lacking. We propose visual validation, as an approach for the graphical inspection of (Q)SAR model validation results. New functionalities in CheS-Mapper 2.0 facilitate the analysis of (Q)SAR information and allow the visual validation of (Q)SAR models. The tool enables the comparison of model predictions to the actual activity in feature space. Our approach reveals if the endpoint is modeled too specific or too generic and highlights common properties of misclassified compounds. Moreover, the researcher can use CheS-Mapper to inspect how the (Q)SAR model predicts activity cliffs. The CheS-Mapper software is freely available at http://ches-mapper.org.