1 resultado para Fat tissue

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die Elektrische Impedanztomographie soll als kostengünstige und nebenwirkungsfreie Tomographiemethode in der medizinischen Diagnostik, z. B. in der Mammographie dienen. Mit der EIT läßt sich Krebsgewebe von gesundem Gewebe unterscheiden, da es eine signifikant erhöhte Leitfähigkeit aufweist. Damit kann die EIT als Ergänzung zu den klassischen Diagnoseverfahren dienen. So ist z.B. bei jungen Frauen mit einem dichteren Fettgewebe die Identifizierung eines Mammakarzinoms mit der Röntgentomographie nicht immer möglich. Ziel dieser Arbeit war es, einen Prototypen für die Impedanztomographie zu entwickeln und mögliche Anwendungen zu testen. Der Tomograph ist in Zusammenarbeit mit Dr. K.H.Georgi gebaut worden. Der Tomograph erlaubt es niederohmige, Wechselströme an Elektroden auf der Körperoberfläche einzuspeisen. Die Potentiale können an diesen Elektroden programmierbar vorgegeben werden. Weitere hochohmige Elektroden dienen zur Potentialmessung. Um den Hautwiderstand zu überbrücken, werden Wechselstromfrequenzen von 20-100 kHz eingesetzt. Mit der Möglichkeit der Messung von Strom und Potential auf unterschiedlichen Elektroden kann man das Problem des nur ungenau bekannten Hautwiderstandes umgehen. Prinzipiell ist es mit dem Mainzer EIT System möglich, 100 Messungen in der Sekunde durchzuführen. Auf der Basis von mit dem Mainzer EIT gewonnenen Daten sollten unterschiedliche Rekonstruktionsalgorithmen getestet und weiterentwickelt werden. In der Vergangenheit sind verschiedene Rekonstruktionsalgorithmen für das mathematisch schlecht gestellte EIT Problem betrachtet worden. Sie beruhen im Wesentlichen auf zwei Strategien: Die Linearisierung und iterative Lösung des Problems und Gebietserkennungsmethoden. Die iterativen Verfahren wurden von mir dahingehend modifiziert, dass Leitfähigkeitserhöhungen und Leitfähigkeitserniedrigungen gleichberechtigt behandelt werden können. Für den modifizierten Algorithmus wurden zwei verschiedene Rekonstruktionsalgorithmen programmiert und mit synthetischen Daten getestet. Zum einen die Rekonstruktion über die approximative Inverse, zum anderen eine Rekonstruktion mit einer Diskretisierung. Speziell für die Rekonstruktion mittels Diskretisierung wurde eine Methode entwickelt, mit der zusätzliche Informationen in der Rekonstruktion berücksichtigt werden können, was zu einer Verbesserung der Rekonstruktion beiträgt. Der Gebietserkennungsalgorithmus kann diese Zusatzinformationen liefern. In der Arbeit wurde ein neueres Verfahren für die Gebietserkennung derart modifiziert, dass eine Rekonstruktion auch für getrennte Strom- und Spannungselektroden möglich wurde. Mit Hilfe von Differenzdaten lassen sich ausgezeichnete Rekonstruktionen erzielen. Für die medizinischen Anwendungen sind aber Absolutmessungen nötig, d.h. ohne Leermessung. Der erwartende Effekt einer Inhomogenität in der Leitfähigkeit ist sehr klein und als Differenz zweier grosser Zahlen sehr schwierig zu bestimmen. Die entwickelten Algorithmen kommen auch gut mit Absolutdaten zurecht.