1 resultado para FREE GROUPS
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Eine Gruppe G hat endlichen Prüferrang (bzw. Ko-zentralrang) kleiner gleich r, wenn für jede endlich erzeugte Gruppe H gilt: H (bzw. H modulo seinem Zentrum) ist r-erzeugbar. In der vorliegenden Arbeit werden, soweit möglich, die bekannten Sätze über Gruppen von endlichem Prüferrang (kurz X-Gruppen), auf die wesentlich größere Klasse der Gruppen mit endlichem Ko-zentralrang (kurz R-Gruppen) verallgemeinert.Für lokal nilpotente R-Gruppen, welche torsionsfrei oder p-Gruppen sind, wird gezeigt, dass die Zentrumsfaktorgruppe eine X-Gruppe sein muss. Es folgt, dass Hyperzentralität und lokale Nilpotenz für R-Gruppen identische Bediungungen sind. Analog hierzu sind R-Gruppen genau dann lokal auflösbar, wenn sie hyperabelsch sind. Zentral für die Strukturtheorie hyperabelscher R-Gruppen ist die Tatsache, dass solche Gruppen eine aufsteigende Normalreihe abelscher X-Gruppen besitzen. Es wird eine Sylowtheorie für periodische hyperabelsche R-Gruppen entwickelt. Für torsionsfreie hyperabelsche R-Gruppen wird deren Auflösbarkeit bewiesen. Des weiteren sind lokal endliche R-Gruppen fast hyperabelsch. Für R-Gruppen fallen sehr große Gruppenklassen mit den fast hyperabelschen Gruppen zusammen. Hierzu wird der Begriff der Sektionsüberdeckung eingeführt und gezeigt, dass R-Gruppen mit fast hyperabelscher Sektionsüberdeckung fast hyperabelsch sind.