2 resultados para FLS

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mit Hilfe von Brennstoffzellen wird eine effiziente Energieumwandlung von chemischer in elektrische Energie möglich. Die kommerziellen PEM-Brennstoffzellen benutzen Membra-nen, die zum Erreichen hoher Leitfähigkeiten eine wässrige Phase erfordern, in der der Proto-nentransport stattfindet. Somit wird die Betriebstemperatur durch den Siedepunkt des Wassers limitiert. Die verwendeten Pt-Katalysatoren zeigen bei niedrigen Temperaturen eine höhere Empfindlichkeit gegenüber CO, dass im Reformierungsprozess bei der Erzeugung von Was-serstoff entsteht. Austausch der wässrigen Phase gegen Heterozyklen, die ein zu Wasser ver-gleichbares Wasserstoffbrückennetzwerk aufbauen, in dem der Protonentransport stattfinden kann, ermöglicht eine höhere Betriebstemperatur. Durch das im Laufe des Brennstoffzellen-betriebs gebildete Wasser, können die Heterozyklen verdünnt bzw. komplett aus der Memb-ran ausgewaschen werden. Daher ist es erforderlich, die Ladungsträger an ein Polymerrück-grat zu binden, so dass sie eine hohe Beweglichkeit und Konzentration, die denen in der flüs-sigen Phase einer konventionellen Membran entsprechen, aufweisen. Diese Arbeit beschreibt die Synthese und Charakterisierung von Protonenleitern, die ohne eine flüssige Phase auskommen, da sie bereits protonische Leitfähigkeit als intrinsische Ei-genschaft zeigen. Es wurden verschiedene imidazol- bzw. benzimidazolhaltige Dimere und Polythiophene, in denen Benzimidazol in der Seitenkette über verschieden flexible Spacer mit dem Polymerrückgrat verbunden ist, synthetisiert. Die Materialien wurden in undotierten Zu-stand und nach Dotierung mit geringen Mengen Phosphorsäure umfassend charakterisiert und auf thermisches Verhalten, Stabilität und Leitfähigkeit untersucht. Die benzimidazolhaltigen Dimere weisen mit 250 °C die höchsten Zersetzungstemperaturen auf. Mit zunehmender Temperatur kann in allen Fällen eine Erhöhung der Leitfähigkeit beobachtet werden, die sich in der Arrhenius-Auftragung durch eine Gerade anpassen lässt, somit kann der Protonentrans-port durch einen Protonen-hüpfmechanismus beschrieben werden. Die höchste beobachtete Leitfähigkeit liegt im Bereich von 10-6 S/cm bei 160 °C. Durch Zusatz von Phosphorsäure kann die Leitfähigkeit z.T. um einige Größenordnungen gesteigert werden. Eine Ausnahme bilden die Polythiophene, die sowohl protonische als auch elektronische Leitfähigkeit besit-zen. Hier führt die Säure zu einer Lokalisierung der Ladungsträger, so dass die elektronische Leitfähigkeit eingeschränkt wird.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis deals with the investigation of exciton and charge dynamics in hybrid solar cells by time-resolved optical spectroscopy. Quasi-steady-state and transient absorption spectroscopy, as well as time-resolved photoluminescence spectroscopy, were employed to study charge generation and recombination in solid-state organic dye-sensitized solar cells, where the commonly used liquid electrolyte is replaced by an organic solid hole transporter, namely 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-MeOTAD), and polymer-metal oxide bulk heterojunction solar cells, where the commonly used fullerene acceptor [6,6]-phenyl C61 butyric acid methyl ester (PCBM) is replaced by zinc oxide (ZnO) nanoparticles. By correlating the spectroscopic results with the photovoltaic performance, efficiency-limiting processes and processes leading to photocurrent generation in the investigated systems are revealed. rnIt is shown that the charge generation from several all-organic donor-π-bridge-acceptor dyes, specifically perylene monoimide derivatives, employed in solid-state dye-sensitized solar cells, is strongly dependent on the presence of a commonly used additive lithium bis(trifluoromethanesulphonyl)imide salt (Li-TFSI) at the interface. rnMoreover, it is shown that charges can not only be generated by electron injection from the excited dye into the TiO2 acceptor and subsequent regeneration of the dye cation by the hole transporter, but also by an alternative mechanism, called preceding hole transfer (or reductive quenching). Here, the excited dye is first reduced by the hole transporter and the thereby formed anion subsequently injects an electron into the titania. This additional charge generation process, which is only possible for solid hole transporters, helps to overcome injection problems. rnHowever, a severe disadvantage of solid-state dye-sensitized solar cells is re-vealed by monitoring the transient Stark effect on dye molecules at the inter-face induced by the electric field between electrons and holes. The attraction between the negative image charge present in TiO2, which is induced by the positive charge carrier in the hole transporter due to the dielectric contrast between the organic spiro-MeOTAD and inorganic titania, is sufficient to at-tract the hole back to the interface, thereby increasing recombination and suppressing the extraction of free charges.rnBy investigating the effect of different dye structures and physical properties on charge generation and recombination, design rules and guidelines for the further advancement of solid-state dye-sensitized solar cells are proposed.rnFinally, a spectroscopic study on polymer:ZnO bulk heterojunction hybrid solar cells, employing different surfactants attached to the metal oxide nanoparticles, was performed to understand the effect of surfactants upon photovoltaic behavior. By applying a parallel pool analysis on the transient absorption data, it is shown that suppressing fast recombination while simultaneously maintaining the exciton splitting efficiency by the right choice of surfactants leads to better photovoltaic performances. Suppressing the fast recombination completely, whilst maintaining the exciton splitting, could lead to a doubling of the power conversion efficiency of this type of solar cell.