3 resultados para Experimental Problems
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In der vorliegenden Arbeit wird die Struktur von Alkali- und Erdalkalisilicatglaesern bei hohen Temperaturen (bis 1800 K) mit Hilfe der Raman-Spektroskopie untersucht. Ein wesentlicher Teil der vorliegenden Arbeit besteht in dem Aufbau einer Hochtemperatureinrichtung, die es erlaubt, Raman-Spektren von Silicatglaesern bei sehr hohen Temperaturen zu messen. Mit der Hochtemperatur-Raman-Spektroskopie an Silicatglaesern sind erhebliche experimentelle Schwierigkeiten verbunden: Die thermische Strahlung der Probe überlagert sich mit dem Raman-Spektrum.Die Temperaturbestimmung der Glasprobe, die einen Durchmesser von nur 0,8 mm hat, erfolgt durch den Vergleich der Stokes- und Anti-Stokes-Raman-Intensitaeten einer intensiven Linie einer Referenzprobe. Die Natriumsilicatglaeser werden detailliert untersucht und die Verteilung der Struktureinheiten in den Natriumsilicatglaesern wird zwischen Zimmertemperatur und 900 K bestimmt. Aus der Verteilung der Strukturelemente wird eine Gleichgewichtskonstante K berechnet, welche die Disproportionierungsreaktion zwischen den Struktureinheiten in den Glaesern beschreibt. Der Wert für die Reaktionsenthalpie liegt im untersuchten Konzentrationsbereich zwischen 0 und 28 kJ/mol und haengt systematisch von der Zusammensetzung ab. Die Reaktionsenthalpie nimmt mit zunehmendem Natriumoxid-Gehalt zu.Die quantitative Auswertung der Raman-Spektren der Kaliumsilicatglaeser und der Bariumsilicatglaeser ist auf Grund deren Kristallisation bei hohen Temperaturen mit Problemen behaftet.
Resumo:
The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A promising result is that one can qualitatively reconstruct the conductivity inside the cross-section of a human chest. Even though the human volunteer is neither two-dimensional nor circular, such reconstructions can be useful in medical applications: monitoring for lung problems such as accumulating fluid or a collapsed lung and noninvasive monitoring of heart function and blood flow.
Resumo:
When designing metaheuristic optimization methods, there is a trade-off between application range and effectiveness. For large real-world instances of combinatorial optimization problems out-of-the-box metaheuristics often fail, and optimization methods need to be adapted to the problem at hand. Knowledge about the structure of high-quality solutions can be exploited by introducing a so called bias into one of the components of the metaheuristic used. These problem-specific adaptations allow to increase search performance. This thesis analyzes the characteristics of high-quality solutions for three constrained spanning tree problems: the optimal communication spanning tree problem, the quadratic minimum spanning tree problem and the bounded diameter minimum spanning tree problem. Several relevant tree properties, that should be explored when analyzing a constrained spanning tree problem, are identified. Based on the gained insights on the structure of high-quality solutions, efficient and robust solution approaches are designed for each of the three problems. Experimental studies analyze the performance of the developed approaches compared to the current state-of-the-art.