3 resultados para Estimation, Generalized Class, Polynomial Phase
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
A complete understanding of the glass transition isstill a challenging problem. Some researchers attributeit to the (hypothetical) occurrence of a static phasetransition, others emphasize the dynamical transitionof mode coupling-theory from an ergodic to a non ergodicstate. A class of disordered spin models has been foundwhich unifies both scenarios. One of these models isthe p-state infinite range Potts glass with p>4, whichexhibits in the thermodynamic limit both a dynamicalphase transition at a temperature T_D, and a static oneat T_0 < T_D. In this model every spins interacts withall the others, irrespective of distance. Interactionsare taken from a Gaussian distribution.In order to understand better its behavior forfinite number N of spins and the approach to thethermodynamic limit, we have performed extensive MonteCarlo simulations of the p=10 Potts glass up to N=2560.The time-dependent spin-autocorrelation function C(t)shows strong finite size effects and it does not showa plateau even for temperatures around the dynamicalcritical temperature T_D. We show that the N-andT-dependence of the relaxation time for T > T_D can beunderstood by means of a dynamical finite size scalingAnsatz.The behavior in the spin glass phase down to atemperature T=0.7 (about 60% of the transitiontemperature) is studied. Well equilibratedconfigurations are obtained with the paralleltempering method, which is also useful for properlyestablishing static properties, such as the orderparameter distribution function P(q). Evidence is givenfor the compatibility with a one step replica symmetrybreaking scenario. The study of the cumulants of theorder parameter does not permit a reliable estimation ofthe static transition temperature. The autocorrelationfunction at low T exhibits a two-step decay, and ascaling behavior typical of supercooled liquids, thetime-temperature superposition principle, is observed. Inthis region the dynamics is governed by Arrheniusrelaxations, with barriers growing like N^{1/2}.We analyzed the single spin dynamics down to temperaturesmuch lower than the dynamical transition temperature. We found strong dynamical heterogeneities, which explainthe non-exponential character of the spin autocorrelationfunction. The spins seem to relax according to dynamicalclusters. The model in three dimensions tends to acquireferromagnetic order for equal concentration of ferro-and antiferromagnetic bonds. The ordering has differentcharacteristics from the pure ferromagnet. The spinglass susceptibility behaves like chi_{SG} proportionalto 1/T in the region where a spin glass is predicted toexist in mean-field. Also the analysis of the cumulantsis consistent with the absence of spin glass orderingat finite temperature. The dynamics shows multi-scalerelaxations if a bimodal distribution of bonds isused. We propose to understand it with a model based onthe local spin configuration. This is consistent with theabsence of plateaus if Gaussian interactions are used.
Resumo:
Eine Gruppe G hat endlichen Prüferrang (bzw. Ko-zentralrang) kleiner gleich r, wenn für jede endlich erzeugte Gruppe H gilt: H (bzw. H modulo seinem Zentrum) ist r-erzeugbar. In der vorliegenden Arbeit werden, soweit möglich, die bekannten Sätze über Gruppen von endlichem Prüferrang (kurz X-Gruppen), auf die wesentlich größere Klasse der Gruppen mit endlichem Ko-zentralrang (kurz R-Gruppen) verallgemeinert.Für lokal nilpotente R-Gruppen, welche torsionsfrei oder p-Gruppen sind, wird gezeigt, dass die Zentrumsfaktorgruppe eine X-Gruppe sein muss. Es folgt, dass Hyperzentralität und lokale Nilpotenz für R-Gruppen identische Bediungungen sind. Analog hierzu sind R-Gruppen genau dann lokal auflösbar, wenn sie hyperabelsch sind. Zentral für die Strukturtheorie hyperabelscher R-Gruppen ist die Tatsache, dass solche Gruppen eine aufsteigende Normalreihe abelscher X-Gruppen besitzen. Es wird eine Sylowtheorie für periodische hyperabelsche R-Gruppen entwickelt. Für torsionsfreie hyperabelsche R-Gruppen wird deren Auflösbarkeit bewiesen. Des weiteren sind lokal endliche R-Gruppen fast hyperabelsch. Für R-Gruppen fallen sehr große Gruppenklassen mit den fast hyperabelschen Gruppen zusammen. Hierzu wird der Begriff der Sektionsüberdeckung eingeführt und gezeigt, dass R-Gruppen mit fast hyperabelscher Sektionsüberdeckung fast hyperabelsch sind.
Resumo:
The present thesis is concerned with certain aspects of differential and pseudodifferential operators on infinite dimensional spaces. We aim to generalize classical operator theoretical concepts of pseudodifferential operators on finite dimensional spaces to the infinite dimensional case. At first we summarize some facts about the canonical Gaussian measures on infinite dimensional Hilbert space riggings. Considering the naturally unitary group actions in $L^2(H_-,gamma)$ given by weighted shifts and multiplication with $e^{iSkp{t}{cdot}_0}$ we obtain an unitary equivalence $F$ between them. In this sense $F$ can be considered as an abstract Fourier transform. We show that $F$ coincides with the Fourier-Wiener transform. Using the Fourier-Wiener transform we define pseudodifferential operators in Weyl- and Kohn-Nirenberg form on our Hilbert space rigging. In the case of this Gaussian measure $gamma$ we discuss several possible Laplacians, at first the Ornstein-Uhlenbeck operator and then pseudo-differential operators with negative definite symbol. In the second case, these operators are generators of $L^2_gamma$-sub-Markovian semi-groups and $L^2_gamma$-Dirichlet-forms. In 1992 Gramsch, Ueberberg and Wagner described a construction of generalized Hörmander classes by commutator methods. Following this concept and the classical finite dimensional description of $Psi_{ro,delta}^0$ ($0leqdeltaleqroleq 1$, $delta< 1$) in the $C^*$-algebra $L(L^2)$ by Beals and Cordes we construct in both cases generalized Hörmander classes, which are $Psi^*$-algebras. These classes act on a scale of Sobolev spaces, generated by our Laplacian. In the case of the Ornstein-Uhlenbeck operator, we prove that a large class of continuous pseudodifferential operators considered by Albeverio and Dalecky in 1998 is contained in our generalized Hörmander class. Furthermore, in the case of a Laplacian with negative definite symbol, we develop a symbolic calculus for our operators. We show some Fredholm-criteria for them and prove that these Fredholm-operators are hypoelliptic. Moreover, in the finite dimensional case, using the Gaussian-measure instead of the Lebesgue-measure the index of these Fredholm operators is still given by Fedosov's formula. Considering an infinite dimensional Heisenberg group rigging we discuss the connection of some representations of the Heisenberg group to pseudo-differential operators on infinite dimensional spaces. We use this connections to calculate the spectrum of pseudodifferential operators and to construct generalized Hörmander classes given by smooth elements which are spectrally invariant in $L^2(H_-,gamma)$. Finally, given a topological space $X$ with Borel measure $mu$, a locally compact group $G$ and a representation $B$ of $G$ in the group of all homeomorphisms of $X$, we construct a Borel measure $mu_s$ on $X$ which is invariant under $B(G)$.