2 resultados para Energy Requirements

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Im zentralen Nervensystem (ZNS) myelinisieren Oligodendrozyten neuronale Axone, indem sie ihre Zellfortsätze mehrfach um axonale Segmente wickeln. Die Ausbildung dieser multilamellaren Membranstapel ermöglicht eine saltatorische und damit rasche und energie-effiziente Erregungsleitung (Nave, 2010). Eine Schädigung des Myelins beeinträchtigt die Reizweiterleitung und führt zur Degeneration der Axone, wie es zum Beispiel bei der Multiplen Sklerose der Fall ist. Das Myelin basische Protein (MBP) ist ein Hauptbestandteil des Myelin und ist essentiell für die Kompaktierung der Myelinmembran (Wood et al., 1984). Die MBP mRNA wird in hnRNP A2 enthaltenen RNA Granulen in einem translations-inaktiven Zustand zu den distalen Fortsätzen transportiert. Vermittelt durch axonale Signale wird nach axo-glialem Kontakt die Translation von MBP ermöglicht (White et al., 2008). Der genaue Mechanismus der differentiellen Genregulation des MBP Proteins ist bisher nur unzureichend aufgeklärt. In der vorliegenden Arbeit konnte eine kleine regulatorische RNA (sncRNA) identifiziert werden, welche über die seed Region mit der MBP mRNA interagieren und die Translation regulieren kann. In primären Oligodendrozyten führt die Überexpression der sncRNA-715 zu reduzierten MBP Protein Mengen und die Blockierung der endogenen sncRNA-715 führt zu einer gesteigerten MBP Synthese. Interessanterweise korreliert während der Differenzierung der Oligodendrozyten in vitro und in vivo die Synthese des MBP Proteins invers mit der Expression der sncRNA-715. In Oligodendrozyten beeinflusst eine experimentell erhöhte sncRNA-715 Menge die Zellmorphologie und induziert Apoptose. Weiterhin ist sncRNA-715 in zytoplasmatischen granulären Strukturen lokalisiert und assoziiert mit MBP mRNA in hnRNP A2 Transport- Granula. Diese Ergebnisse lassen vermuten, dass sncRNA-715 ein Bestandteil der hnRNP A2 Granula sein könnte und dort spezifisch die Translation der MBP mRNA während des Lokalisationsprozesses inhibiert. In chronischen MS Läsionen sind Olig2+-Zellen zu finden. Obwohl die MBP mRNA in diesen Läsionen nachzuweisen ist, kann kein Protein synthetisiert werden. In dieser Arbeit konnte gezeigt werden, dass in diesen Läsionen die Expression der sncRNA-715 erhöht ist. SncRNA-715 könnte die Translation von MBP verhindern und folglich als Inhibitor der Remyelinisierung während des Krankheitsverlaufs fungieren. Schwann-Zellen sind die myelinisierenden Zellen im peripheren Nervensystem (PNS). Im Zuge der Myelinisierung wird die MBP mRNA in diesen Gliazellen ebenfalls in die distalen Fortsätze transportiert und dort lokal translatiert und in die Myelinmembran eingebaut (Trapp et al., 1987). Im Gegensatz zum ZNS ist im PNS nur wenig über den Transportmechanismus der mRNA bekannt (Masaki, 2012). Es ist es sehr wahrscheinlich, dass in Schwann-Zellen und Oligodendrozyten die Lokalisation und die translationale Hemmung der MBP mRNA ähnlichen Mechanismen unterliegen. In der vorliegenden Arbeit konnte gezeigt werden, dass hnRNP A2 und sncRNA-715 in Schwann-Zellen exprimiert werden und in zytoplasmatischen Granula-ähnlichen Strukturen lokalisiert sind. Während der Differenzierung dieser Gliazellen in vivo und in vitro korreliert die Expression der sncRNA-715 invers mit der Synthese des MBP Proteins. HnRNP A2 und sncRNA-715 scheinen in Schwann-Zellen assoziiert zu sein und könnten wie in Oligodendrozyten den Transport der MBP mRNA vermitteln.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene, the thinnest two-dimensional material possible, is considered as a realistic candidate for the numerous applications in electronic, energy storage and conversion devices due to its unique properties, such as high optical transmittance, high conductivity, excellent chemical and thermal stability. However, the electronic and chemical properties of graphene are highly dependent on their preparation methods. Therefore, the development of novel chemical exfoliation process which aims at high yield synthesis of high quality graphene while maintaining good solution processability is of great concern. This thesis focuses on the solution production of high-quality graphene by wet-chemical exfoliation methods and addresses the applications of the chemically exfoliated graphene in organic electronics and energy storage devices.rnPlatinum is the most commonly used catalysts for fuel cells but they suffered from sluggish electron transfer kinetics. On the other hand, heteroatom doped graphene is known to enhance not only electrical conductivity but also long term operation stability. In this regard, a simple synthetic method is developed for the nitrogen doped graphene (NG) preparation. Moreover, iron (Fe) can be incorporated into the synthetic process. As-prepared NG with and without Fe shows excellent catalytic activity and stability compared to that of Pt based catalysts.rnHigh electrical conductivity is one of the most important requirements for the application of graphene in electronic devices. Therefore, for the fabrication of electrically conductive graphene films, a novel methane plasma assisted reduction of GO is developed. The high electrical conductivity of plasma reduced GO films revealed an excellent electrochemical performance in terms of high power and energy densities when used as an electrode in the micro-supercapacitors.rnAlthough, GO can be prepared in bulk scale, large amount of defect density and low electrical conductivity are major drawbacks. To overcome the intrinsic limitation of poor quality of GO and/or reduced GO, a novel protocol is extablished for mass production of high-quality graphene by means of electrochemical exfoliation of graphite. The prepared graphene shows high electrical conductivity, low defect density and good solution processability. Furthermore, when used as electrodes in organic field-effect transistors and/or in supercapacitors, the electrochemically exfoliated graphene shows excellent device performances. The low cost and environment friendly production of such high-quality graphene is of great importance for future generation electronics and energy storage devices. rn