4 resultados para Embryo aggregation
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Investigations on formation and specification of neural precursor cells in the central nervous system of the Drosophila melanogaster embryoSpecification of a unique cell fate during development of a multicellular organism often is a function of its position. The Drosophila central nervous system (CNS) provides an ideal system to dissect signalling events during development that lead to cell specific patterns. Different cell types in the CNS are formed from a relatively few precursor cells, the neuroblasts (NBs), which delaminate from the neurogenic region of the ectoderm. The delamination occurs in five waves, S1-S5, finally leading to a subepidermal layer consisting of about 30 NBs, each with a unique identity, arranged in a stereotyped spatial pattern in each hemisegment. This information depends on several factors such as the concentrations of various morphogens, cell-cell interactions and long range signals present at the position and time of its birth. The early NBs, delaminating during S1 and S2, form an orthogonal array of four rows (2/3,4,5,6/7) and three columns (medial, intermediate, and lateral) . However, the three column and four row-arrangement pattern is only transitory during early stages of neurogenesis which is obscured by late emerging (S3-S5) neuroblasts (Doe and Goodman, 1985; Goodman and Doe, 1993). Therefore the aim of my study has been to identify novel genes which play a role in the formation or specification of late delaminating NBs.In this study the gene anterior open or yan was picked up in a genetic screen to identity novel and yet unidentified genes in the process of late neuroblast formation and specification. I have shown that the gene yan is responsible for maintaining the cells of the neuroectoderm in an undifferentiated state by interfering with the Notch signalling mechanism. Secondly, I have studied the function and interactions of segment polarity genes within a certain neuroectodermal region, namely the engrailed (en) expressing domain, with regard to the fate specification of a set of late neuroblasts, namely NB 6-4 and NB 7-3. I have dissected the regulatory interaction of the segment polarity genes wingless (wg), hedgehog (hh) and engrailed (en) as they maintain each others expression to show that En is a prerequisite for neurogenesis and show that the interplay of the segmentation genes naked (nkd) and gooseberry (gsb), both of which are targets of wingless (wg) activity, leads to differential commitment of NB 7-3 and NB 6-4 cell fate. I have shown that in the absence of either nkd or gsb one NB fate is replaced by the other. However, the temporal sequence of delamination is maintained, suggesting that formation and specification of these two NBs are under independent control.
Resumo:
Die Zellgenealogie des Polychaeten Platynereis dumerilii wurde durch Farbstoffinjektion in die Blastomeren des 2-, 4- und 8-Zellstadiums, sowie die Zellen 2d, 2d112, 4d und 4d1 untersucht. Injektionen gelangen durch Aufweichung der Vitellinhülle mittels Dithioerythritol und Trypsin. Die injizierten Keime wurden zur Trochophora bzw zum dreisegmentigen Jungwurm aufgezogen, fixiert und mit dem konfokalen Rasterlichtmikroskop dreidimensional aufgenommen. Die animal-vegetale Achse des Frühkeims entspricht der antero-posterioren Achse des Jungwurms. Die Mikromeren des ersten Quartetts sind radiär um die antero-posteriore Achse angeordnet und bilden den Kopf. Die Mikromere 2d proliferiert bilateralsymmetrisch von der dorsalen Mittellinie aus und liefert das gesamte Rumpfektoderm. Indirekt ließ sich ableiten, daß die Mikromeren 2a1 bis 2c1 schmale ektodermale Streifen zwischen Kopf und Rumpf bilden und aus 2a2 und 2c2 das ektodermale Stomodaeum hervorgeht. Die Mikromeren des dritten Quartetts sowie möglicherweise 2b2 bilden 'Ektomesoderm'. 4d proliferiert ebenfalls bilateralsymmetrisch von der dorsalen Mittellinie aus zum Rumpfmesoderm und liefert vielleicht noch kleine Beiträge zum Aufbau des Darmes. Der Mitteldarm stammt von den dotterreichen Makromeren 4A bis 4D.
Resumo:
Gliazellen kommen in allen höheren Organismen vor und sind sowohl für die korrekte Entwicklung, als auch für die Funktionalität des adulten Nervensystems unerlässlich. Eine der mannigfachen Funktionen dieses Zelltyps ist die Umhüllung von Axonen im zentralen und peripheren Nervensystem (ZNS und PNS). Um eine vollständige Umhüllung zu gewährleisten, wandern Gliazellen während der Neurogenese zum Teil über enorme Distanzen von ihrem Entstehungsort aus. Dies trifft insbesondere auf die Gliazellen zu, durch deren Membranausläufer die distalen Axonbereiche der peripheren Nerven isoliert werden.rnIn dieser Arbeit wurde die Migration von Gliazellen anhand des Modelorganismus Drosophila untersucht. Ein besonderes Interesse galt dabei der Wanderung einer distinkten Population von Gliazellen, den sogenannten embryonalen Peripheren Gliazellen (ePG). Die ePGs werden überwiegend im sich entwickelnden ventralen Bauchmark geboren und wandern anschließend entlang der peripheren Nerventrakte nach dorsal aus, um diese bis zum Ende der Embryogenese zu umhüllen und dadurch die gliale Blut-Nerv-Schranke zu etablieren. Das Hauptziel dieser Arbeit bestand darin, neue Faktoren bzw. Mechanismen aufzudecken, durch welche die Migration der ePGs reguliert wird. Dazu wurde zunächst der wildtypische Verlauf ihrer Wanderung detailliert analysiert. Es stellte sich heraus, dass in jedem abdominalen Hemisegment eine invariante Anzahl von 12 ePGs von distinkten neuralen Vorläuferzellen generiert wird, die individuelle Identitäten besitzen und mittels molekularer Marker auf Einzelzellebene identifiziert werden können. Basierend auf der charakteristischen Lage der Zellen erfolgte die Etablierung einer neuen, konsistenten Nomenklatur für sämtliche ePGs. Darüber hinaus offenbarten in vivo Migrationsanalysen, dass die Wanderung individueller ePGs stereotyp verläuft und demzufolge weitestgehend prädeterminiert ist. Die genaue Kenntnis der wildtypischen ePG Migration auf Einzelzellebene diente anschließend als Grundlage für detaillierte Mutantenanalysen. Anhand derer konnte für den ebenfalls als molekularen Marker verwendeten Transkriptionsfaktor Castor eine Funktion als zellspezifische Determinante für die korrekte Spezifizierung der ePG6 und ePG8 nachgewiesen werden, dessen Verlust in einem signifikanten Migrationsdefekt dieser beiden ePGs resultiert. Des Weiteren konnte mit Netrin (NetB) der erste diffusible und richtungsweisende Faktor für die Migration von ePGs enthüllt werden, der in Interaktion mit dem Rezeptor Uncoordinated5 speziell die Wanderung der ePG6 und ePG8 leitet. Die von den übrigen Gliazellen unabhängige Navigation der ePG6 und ePG8 belegt, dass zumindest die Migration von Gruppen der ePGs durch unterschiedliche Mechanismen kontrolliert wird, was durch die Resultate der durchgeführten Ablationsexperimente bestätigt wird. rnFerner konnte gezeigt werden, dass während der frühen Gliogenese eine zuvor unbekannte, von Neuroblasten bereitgestellte Netrinquelle an der initialen Wegfindung der Longitudinalen Gliazellen (eine Population Neuropil-assoziierter Gliazellen im ZNS) beteiligt ist. In diesem Kontext erfolgt die Signaldetektion bereits in deren Vorläuferzelle, dem Longitudinalen Glioblasten, zellautonom über den Rezeptor Frazzled. rnFür künftige Mutantenscreens zur Identifizierung weiterer an der Migration der ePGs beteiligter Faktoren stellt die in dieser Arbeit präsentierte detaillierte Beschreibung eine wichtige Grundlage dar. Speziell in Kombination mit den vorgestellten molekularen Markern liefert sie die Voraussetzung dafür, individuelle ePGs auch im mutanten Hintergrund zu erfassen, wodurch selbst subtile Phänotypen überhaupt erst detektiert und auf Einzelzellebene analysiert werden können. Aufgrund der aufgezeigten voneinander unabhängigen Wegfindung, erscheinen Mutantenanalysen ohne derartige Möglichkeiten wenig erfolgversprechend, da Mutationen vermutlich mehrheitlich die Migration einzelner oder weniger ePGs beeinträchtigen. Letzten Endes wird somit die Aussicht verbessert, weitere neuartige Migrationsfaktoren im Modellorganismus Drosophila zu entschlüsseln, die gegebenenfalls bis hin zu höheren Organismen konserviert sind und folglich zum Verständnis der Gliazellwanderung in Vertebraten beitragen.
Resumo:
A unique characteristic of soft matter is its ability to self-assemble into larger structures. Characterizing these structures is crucial for their applications. In the first part of this work, I investigated DNA-organic hybrid material by means of Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Cross-Correlation Spectroscopy (FCCS). DNA-organic hybrid materials, a novel class of hybrid materials composed of synthetic macromolecules and oligodeoxynucleotide segmenta, are mostly amphiphilic and can self-assemble into supramolecular structures in aqueous solution. A hybrid material of a fluorophore, perylenediimide (PDI), and a DNA segment (DNA-PDI) has been developed in Prof. A. Hermann’s group (University of Groningen). This novel material has the ability to form aggregates through pi-pi stacking between planar PDIs and can be traced in solution due to the fluorescence of PDI. I have determined the diffusion coefficient of DNA-PDI conjugates in aqueous solution by means of FCS. In addition, I investigated whether such DNA-PDIs form aggregates with certain structure, for instance dimers. rnOnce the DNA hybrid material self-assemble into supermolecular structures for instance into micelles, the single molecules do not necessarily stay in one specific micelle. Actually, a single molecule may enter and leave micelles constantly. The average residence time of a single molecule in a certain micelle depends on the nature of the molecule. I have chosen DNA-b-polypropylene oxide (PPO) as model molecules and investigated the residence time of DNA-b-PPO molecules in their according micelles by means of FCCS.rnBesides the DNA hybrid materials, polymeric colloids can also form ordered structures once they are brought to an air/water interface. Here, hexagonally densely packed monolayers can be generated. These monolayers can be deposited onto different surfaces as coating layers. In the second part of this work, I investigated the mechanical properties of such colloidal monolayers using micromechanical cantilevers. When a coating layer is deposited on a cantilever, it can modify the elasticity of the cantilever. This variation can be reflected either by a deflection or by a resonance frequency shift of the cantilever. In turn, detecting these changes provides information about the mechanical properties of the coating layer. rnIn the second part of this work, polymeric colloidal monolayers were coated on a cantilever and homogenous polymer films of a few hundred nanometers in thickness were generated from these colloidal monolayers by thermal annealing or organic vapor annealing. Both the film formation process and the mechanical properties of these resulting homogenous films were investigated by means of cantilever. rnElastic property changes of the coating film, for example upon absorption of organic vapors, induce a deflection of the cantilever. This effect enables a cantilever to detect target molecules, when the cantilever is coated with an active layer with specific affinity to target molecules. In the last part of this thesis, I investigated the applicability of suitably functionalized micromechanical cantilevers as sensors. In particular, glucose sensitive polymer brushes were grafted on a cantilever and the deflection of this cantilever was measured during exposure to glucose solution. rn