29 resultados para Elliptic Integrals

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zusammenfassung In der vorliegenden Arbeit besch¨aftige ich mich mit Differentialgleichungen von Feynman– Integralen. Ein Feynman–Integral h¨angt von einem Dimensionsparameter D ab und kann f¨ur ganzzahlige Dimension als projektives Integral dargestellt werden. Dies ist die sogenannte Feynman–Parameter Darstellung. In Abh¨angigkeit der Dimension kann ein solches Integral divergieren. Als Funktion in D erh¨alt man eine meromorphe Funktion auf ganz C. Ein divergentes Integral kann also durch eine Laurent–Reihe ersetzt werden und dessen Koeffizienten r¨ucken in das Zentrum des Interesses. Diese Vorgehensweise wird als dimensionale Regularisierung bezeichnet. Alle Terme einer solchen Laurent–Reihe eines Feynman–Integrals sind Perioden im Sinne von Kontsevich und Zagier. Ich beschreibe eine neue Methode zur Berechnung von Differentialgleichungen von Feynman– Integralen. ¨ Ublicherweise verwendet man hierzu die sogenannten ”integration by parts” (IBP)– Identit¨aten. Die neue Methode verwendet die Theorie der Picard–Fuchs–Differentialgleichungen. Im Falle projektiver oder quasi–projektiver Variet¨aten basiert die Berechnung einer solchen Differentialgleichung auf der sogenannten Griffiths–Dwork–Reduktion. Zun¨achst beschreibe ich die Methode f¨ur feste, ganzzahlige Dimension. Nach geeigneter Verschiebung der Dimension erh¨alt man direkt eine Periode und somit eine Picard–Fuchs–Differentialgleichung. Diese ist inhomogen, da das Integrationsgebiet einen Rand besitzt und daher nur einen relativen Zykel darstellt. Mit Hilfe von dimensionalen Rekurrenzrelationen, die auf Tarasov zur¨uckgehen, kann in einem zweiten Schritt die L¨osung in der urspr¨unglichen Dimension bestimmt werden. Ich beschreibe außerdem eine Methode, die auf der Griffiths–Dwork–Reduktion basiert, um die Differentialgleichung direkt f¨ur beliebige Dimension zu berechnen. Diese Methode ist allgemein g¨ultig und erspart Dimensionswechsel. Ein Erfolg der Methode h¨angt von der M¨oglichkeit ab, große Systeme von linearen Gleichungen zu l¨osen. Ich gebe Beispiele von Integralen von Graphen mit zwei und drei Schleifen. Tarasov gibt eine Basis von Integralen an, die Graphen mit zwei Schleifen und zwei externen Kanten bestimmen. Ich bestimme Differentialgleichungen der Integrale dieser Basis. Als wichtigstes Beispiel berechne ich die Differentialgleichung des sogenannten Sunrise–Graphen mit zwei Schleifen im allgemeinen Fall beliebiger Massen. Diese ist f¨ur spezielle Werte von D eine inhomogene Picard–Fuchs–Gleichung einer Familie elliptischer Kurven. Der Sunrise–Graph ist besonders interessant, weil eine analytische L¨osung erst mit dieser Methode gefunden werden konnte, und weil dies der einfachste Graph ist, dessen Master–Integrale nicht durch Polylogarithmen gegeben sind. Ich gebe außerdem ein Beispiel eines Graphen mit drei Schleifen. Hier taucht die Picard–Fuchs–Gleichung einer Familie von K3–Fl¨achen auf.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we develop and analyze an adaptive numerical scheme for simulating a class of macroscopic semiconductor models. At first the numerical modelling of semiconductors is reviewed in order to classify the Energy-Transport models for semiconductors that are later simulated in 2D. In this class of models the flow of charged particles, that are negatively charged electrons and so-called holes, which are quasi-particles of positive charge, as well as their energy distributions are described by a coupled system of nonlinear partial differential equations. A considerable difficulty in simulating these convection-dominated equations is posed by the nonlinear coupling as well as due to the fact that the local phenomena such as "hot electron effects" are only partially assessable through the given data. The primary variables that are used in the simulations are the particle density and the particle energy density. The user of these simulations is mostly interested in the current flow through parts of the domain boundary - the contacts. The numerical method considered here utilizes mixed finite-elements as trial functions for the discrete solution. The continuous discretization of the normal fluxes is the most important property of this discretization from the users perspective. It will be proven that under certain assumptions on the triangulation the particle density remains positive in the iterative solution algorithm. Connected to this result an a priori error estimate for the discrete solution of linear convection-diffusion equations is derived. The local charge transport phenomena will be resolved by an adaptive algorithm, which is based on a posteriori error estimators. At that stage a comparison of different estimations is performed. Additionally a method to effectively estimate the error in local quantities derived from the solution, so-called "functional outputs", is developed by transferring the dual weighted residual method to mixed finite elements. For a model problem we present how this method can deliver promising results even when standard error estimator fail completely to reduce the error in an iterative mesh refinement process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Factorization Method localizes inclusions inside a body from measurements on its surface. Without a priori knowing the physical parameters inside the inclusions, the points belonging to them can be characterized using the range of an auxiliary operator. The method relies on a range characterization that relates the range of the auxiliary operator to the measurements and is only known for very particular applications. In this work we develop a general framework for the method by considering symmetric and coercive operators between abstract Hilbert spaces. We show that the important range characterization holds if the difference between the inclusions and the background medium satisfies a coerciveness condition which can immediately be translated into a condition on the coefficients of a given real elliptic problem. We demonstrate how several known applications of the Factorization Method are covered by our general results and deduce the range characterization for a new example in linear elasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In various imaging problems the task is to use the Cauchy data of the solutions to an elliptic boundary value problem to reconstruct the coefficients of the corresponding partial differential equation. Often the examined object has known background properties but is contaminated by inhomogeneities that cause perturbations of the coefficient functions. The factorization method of Kirsch provides a tool for locating such inclusions. In this paper, the factorization technique is studied in the framework of coercive elliptic partial differential equations of the divergence type: Earlier it has been demonstrated that the factorization algorithm can reconstruct the support of a strictly positive (or negative) definite perturbation of the leading order coefficient, or if that remains unperturbed, the support of a strictly positive (or negative) perturbation of the zeroth order coefficient. In this work we show that these two types of inhomogeneities can, in fact, be located simultaneously. Unlike in the earlier articles on the factorization method, our inclusions may have disconnected complements and we also weaken some other a priori assumptions of the method. Our theoretical findings are complemented by two-dimensional numerical experiments that are presented in the framework of the diffusion approximation of optical tomography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the heat flux through a domain with subregions in which the thermal capacity approaches zero. In these subregions the parabolic heat equation degenerates to an elliptic one. We show the well-posedness of such parabolic-elliptic differential equations for general non-negative L-infinity-capacities and study the continuity of the solutions with respect to the capacity, thus giving a rigorous justification for modeling a small thermal capacity by setting it to zero. We also characterize weak directional derivatives of the temperature with respect to capacity as solutions of related parabolic-elliptic problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assuming that the heat capacity of a body is negligible outside certain inclusions the heat equation degenerates to a parabolic-elliptic interface problem. In this work we aim to detect these interfaces from thermal measurements on the surface of the body. We deduce an equivalent variational formulation for the parabolic-elliptic problem and give a new proof of the unique solvability based on Lions’s projection lemma. For the case that the heat conductivity is higher inside the inclusions, we develop an adaptation of the factorization method to this time-dependent problem. In particular this shows that the locations of the interfaces are uniquely determined by boundary measurements. The method also yields to a numerical algorithm to recover the inclusions and thus the interfaces. We demonstrate how measurement data can be simulated numerically by a coupling of a finite element method with a boundary element method, and finally we present some numerical results for the inverse problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals.rnrnThe integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph.rnrnStarting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative step to an abstract combinatorial problem, known as Hironaka's polyhedra game. We present a publicly available implementation of the improved algorithm. Furthermore we explain the relationship of the sector decomposition method with the resolution of singularities of a variety, given by a sequence of blow-ups, in algebraic geometry.rnrnMotivated by the connection between Feynman integrals and topics of algebraic geometry we consider the set of periods as defined by Kontsevich and Zagier. This special set of numbers contains the set of multiple zeta values and certain values of polylogarithms, which in turn are known to be present in results for Laurent coefficients of certain dimensionally regularized Feynman integrals. By use of the extended sector decomposition algorithm we prove a theorem which implies, that the Laurent coefficients of an arbitrary Feynman integral are periods if the masses and kinematical invariants take values in the Euclidean momentum region. The statement is formulated for an even more general class of integrals, allowing for an arbitrary number of polynomials in the integrand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das experimentelle Studium der 1966 von Gerasimov, Drell undHearn unabhängig voneinander aufgestellten und als GDH-SummenregelbezeichnetenRelation macht die Vermessung totalerPhotoabsorptionswirkungsquerschnitte von zirkular polarisierten Photonen an longitudinalpolarisierten Nukleonen über einen weiten Energiebereich notwendig. Die im Sommer1998 erfolgte Messung am Mainzer Mikrotron stellt das erste derartigeExperiment mit reellen Photonen zur Messung des GDH-Integrals am Protondar. Die Verwendung eines Frozen-Spin-Butanoltargets, das eingesetzt wurde, umeinen möglichst hohen Proton-Polarisationsgrad zu erreichen, hat diezusätzliche experimentelle Schwierigkeit zur Folge, daß die imButanoltarget enthaltenen Kohlenstoffkerne ebenfalls Reaktionsprodukte liefern, diezusammen mit den am Proton erzeugten nachgewiesen werden.Ziel der Arbeit war die Bestimmung von Wirkungsquerschnittenam freien Proton aus Messungen an einem komplexen Target (CH2) wie esbeim polarisiertenTarget vorliegt. Die hierzu durchgeführten Pilotexperimentedienten neben der Entwicklung von Methoden zur Reaktionsidentifikation auchder Eichung des Detektorsystems. Durch die Reproduktion der schon bekanntenund vermessenen unpolarisierten differentiellen und totalenEin-Pion-Wirkungsquerschnitte am Proton (gamma p -> p pi0 und gamma p -> n pi+), die bis zueiner Photonenergievon etwa 400 MeV den Hauptbeitrag zum GDH-Integralausmachen, konnte gezeigt werden, daß eine Separation der Wasserstoff- vonKohlenstoffereignissen möglich ist. Die notwendigen Techniken hierzu wurden imRahmen dieser Arbeit zu einem allgemein nutzbaren Werkzeug entwickelt.Weiterhin konnte gezeigt werden, daß der vom Kohlenstoffstammende Anteil der Reaktionen keine Helizitätsabhängigkeit besitzt. Unterdieser Voraussetzung reduziert sich die Bestimmung der helizitätsabhängigenWirkungsquerschnittsdifferenz auf eine einfacheDifferenzbildung. Aus den erhaltenen Ergebnissen der intensiven Analyse von Daten, diemit einem unpolarisierten Target erhalten wurden, konnten so schnellerste Resultate für Messungen, die mit dem polarisierten Frozen-Spin-Targetaufgenommen wurden, geliefert werden. Es zeigt sich, daß sich dieseersten Resultate für polarisierte differentielle und totale (gammaN)-Wirkungsquerschnitte im Delta-Bereich in guter Übereinstimmung mit theoretischenAnalysen befinden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, new precision experiments have become possible withthe high luminosity accelerator facilities at MAMIand JLab, supplyingphysicists with precision data sets for different hadronic reactions inthe intermediate energy region, such as pion photo- andelectroproduction and real and virtual Compton scattering.By means of the low energy theorem (LET), the global properties of thenucleon (its mass, charge, and magnetic moment) can be separated fromthe effects of the internal structure of the nucleon, which areeffectively described by polarizabilities. Thepolarizabilities quantify the deformation of the charge andmagnetization densities inside the nucleon in an applied quasistaticelectromagnetic field. The present work is dedicated to develop atool for theextraction of the polarizabilities from these precise Compton data withminimum model dependence, making use of the detailed knowledge of pionphotoproduction by means of dispersion relations (DR). Due to thepresence of t-channel poles, the dispersion integrals for two ofthe six Compton amplitudes diverge. Therefore, we have suggested to subtract the s-channel dispersion integrals at zero photon energy($nu=0$). The subtraction functions at $nu=0$ are calculated through DRin the momentum transfer t at fixed $nu=0$, subtracted at t=0. For this calculation, we use the information about the t-channel process, $gammagammatopipito Nbar{N}$. In this way, four of thepolarizabilities can be predicted using the unsubtracted DR in the $s$-channel. The other two, $alpha-beta$ and $gamma_pi$, are free parameters in ourformalism and can be obtained from a fit to the Compton data.We present the results for unpolarized and polarized RCS observables,%in the kinematics of the most recent experiments, and indicate anenhanced sensitivity to the nucleon polarizabilities in theenergy range between pion production threshold and the $Delta(1232)$-resonance.newlineindentFurthermore,we extend the DR formalism to virtual Compton scattering (radiativeelectron scattering off the nucleon), in which the concept of thepolarizabilities is generalized to the case of avirtual initial photon by introducing six generalizedpolarizabilities (GPs). Our formalism provides predictions for the fourspin GPs, while the two scalar GPs $alpha(Q^2)$ and $beta(Q^2)$ have to befitted to the experimental data at each value of $Q^2$.We show that at energies betweenpion threshold and the $Delta(1232)$-resonance position, thesensitivity to the GPs can be increased significantly, as compared tolow energies, where the LEX is applicable. Our DR formalism can be used for analysing VCS experiments over a widerange of energy and virtuality $Q^2$, which allows one to extract theGPs from VCS data in different kinematics with a minimum of model dependence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing precision of current and future experiments in high-energy physics requires a likewise increase in the accuracy of the calculation of theoretical predictions, in order to find evidence for possible deviations of the generally accepted Standard Model of elementary particles and interactions. Calculating the experimentally measurable cross sections of scattering and decay processes to a higher accuracy directly translates into including higher order radiative corrections in the calculation. The large number of particles and interactions in the full Standard Model results in an exponentially growing number of Feynman diagrams contributing to any given process in higher orders. Additionally, the appearance of multiple independent mass scales makes even the calculation of single diagrams non-trivial. For over two decades now, the only way to cope with these issues has been to rely on the assistance of computers. The aim of the xloops project is to provide the necessary tools to automate the calculation procedures as far as possible, including the generation of the contributing diagrams and the evaluation of the resulting Feynman integrals. The latter is based on the techniques developed in Mainz for solving one- and two-loop diagrams in a general and systematic way using parallel/orthogonal space methods. These techniques involve a considerable amount of symbolic computations. During the development of xloops it was found that conventional computer algebra systems were not a suitable implementation environment. For this reason, a new system called GiNaC has been created, which allows the development of large-scale symbolic applications in an object-oriented fashion within the C++ programming language. This system, which is now also in use for other projects besides xloops, is the main focus of this thesis. The implementation of GiNaC as a C++ library sets it apart from other algebraic systems. Our results prove that a highly efficient symbolic manipulator can be designed in an object-oriented way, and that having a very fine granularity of objects is also feasible. The xloops-related parts of this work consist of a new implementation, based on GiNaC, of functions for calculating one-loop Feynman integrals that already existed in the original xloops program, as well as the addition of supplementary modules belonging to the interface between the library of integral functions and the diagram generator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis deals with the modularity conjecture for three-dimensional Calabi-Yau varieties. This is a generalization of the work of A. Wiles and others on modularity of elliptic curves. Modularity connects the number of points on varieties with coefficients of certain modular forms. In chapter 1 we collect the basics on arithmetic on Calabi-Yau manifolds, including general modularity results and strategies for modularity proofs. In chapters 2, 3, 4 and 5 we investigate examples of modular Calabi-Yau threefolds, including all examples occurring in the literature and many new ones. Double octics, i.e. Double coverings of projective 3-space branched along an octic surface, are studied in detail. In chapter 6 we deal with examples connected with the same modular forms. According to the Tate conjecture there should be correspondences between them. Many correspondences are constructed explicitly. We finish by formulating conjectures on the occurring newforms, especially their levels. In the appendices we compile tables of coefficients of weight 2 and weight 4 newforms and many examples of double octics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present state of the theoretical predictions for the hadronic heavy hadron production is not quite satisfactory. The full next-to-leading order (NLO) ${cal O} (alpha_s^3)$ corrections to the hadroproduction of heavy quarks have raised the leading order (LO) ${cal O} (alpha_s^2)$ estimates but the NLO predictions are still slightly below the experimental numbers. Moreover, the theoretical NLO predictions suffer from the usual large uncertainty resulting from the freedom in the choice of renormalization and factorization scales of perturbative QCD.In this light there are hopes that a next-to-next-to-leading order (NNLO) ${cal O} (alpha_s^4)$ calculation will bring theoretical predictions even closer to the experimental data. Also, the dependence on the factorization and renormalization scales of the physical process is expected to be greatly reduced at NNLO. This would reduce the theoretical uncertainty and therefore make the comparison between theory and experiment much more significant. In this thesis I have concentrated on that part of NNLO corrections for hadronic heavy quark production where one-loop integrals contribute in the form of a loop-by-loop product. In the first part of the thesis I use dimensional regularization to calculate the ${cal O}(ep^2)$ expansion of scalar one-loop one-, two-, three- and four-point integrals. The Laurent series of the scalar integrals is needed as an input for the calculation of the one-loop matrix elements for the loop-by-loop contributions. Since each factor of the loop-by-loop product has negative powers of the dimensional regularization parameter $ep$ up to ${cal O}(ep^{-2})$, the Laurent series of the scalar integrals has to be calculated up to ${cal O}(ep^2)$. The negative powers of $ep$ are a consequence of ultraviolet and infrared/collinear (or mass ) divergences. Among the scalar integrals the four-point integrals are the most complicated. The ${cal O}(ep^2)$ expansion of the three- and four-point integrals contains in general classical polylogarithms up to ${rm Li}_4$ and $L$-functions related to multiple polylogarithms of maximal weight and depth four. All results for the scalar integrals are also available in electronic form. In the second part of the thesis I discuss the properties of the classical polylogarithms. I present the algorithms which allow one to reduce the number of the polylogarithms in an expression. I derive identities for the $L$-functions which have been intensively used in order to reduce the length of the final results for the scalar integrals. I also discuss the properties of multiple polylogarithms. I derive identities to express the $L$-functions in terms of multiple polylogarithms. In the third part I investigate the numerical efficiency of the results for the scalar integrals. The dependence of the evaluation time on the relative error is discussed. In the forth part of the thesis I present the larger part of the ${cal O}(ep^2)$ results on one-loop matrix elements in heavy flavor hadroproduction containing the full spin information. The ${cal O}(ep^2)$ terms arise as a combination of the ${cal O}(ep^2)$ results for the scalar integrals, the spin algebra and the Passarino-Veltman decomposition. The one-loop matrix elements will be needed as input in the determination of the loop-by-loop part of NNLO for the hadronic heavy flavor production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Im Rahmen der vorliegenden Dissertation wurde, basierend auf der Parallel-/Orthogonalraum-Methode, eine neue Methode zur Berechnung von allgemeinen massiven Zweischleifen-Dreipunkt-Tensorintegralen mit planarer und gedrehter reduzierter planarer Topologie entwickelt. Die Ausarbeitung und Implementation einer Tensorreduktion fuer Integrale, welche eine allgemeine Tensorstruktur im Minkowski-Raum besitzen koennen, wurde durchgefuehrt. Die Entwicklung und Implementation eines Algorithmus zur semi-analytischen Berechnung der schwierigsten Integrale, die nach der Tensorreduktion verbleiben, konnte vollendet werden. (Fuer die anderen Basisintegrale koennen wohlbekannte Methoden verwendet werden.) Die Implementation ist bezueglich der UV-endlichen Anteile der Masterintegrale, die auch nach Tensorreduktion noch die zuvor erwaehnten Topologien besitzen, abgeschlossen. Die numerischen Integrationen haben sich als stabil erwiesen. Fuer die verbleibenden Teile des Projektes koennen wohlbekannte Methoden verwendet werden. In weiten Teilen muessen lediglich noch Links zu existierenden Programmen geschrieben werden. Fuer diejenigen wenigen verbleibenden speziellen Topologien, welche noch zu implementieren sind, sind (wohlbekannte) Methoden zu implementieren. Die Computerprogramme, die im Rahmen dieses Projektes entstanden, werden auch fuer allgemeinere Prozesse in das xloops-Projekt einfliessen. Deswegen wurde sie soweit moeglich fuer allgemeine Prozesse entwickelt und implementiert. Der oben erwaehnte Algorithmus wurde insbesondere fuer die Evaluation der fermionischen NNLO-Korrekturen zum leptonischen schwachen Mischungswinkel sowie zu aehnlichen Prozessen entwickelt. Im Rahmen der vorliegenden Dissertation wurde ein Grossteil der fuer die fermionischen NNLO-Korrekturen zu den effektiven Kopplungskonstanten des Z-Zerfalls (und damit fuer den schachen Mischungswinkel) notwendigen Arbeit durchgefuehrt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Berechnung von experimentell überprüfbaren Vorhersagen aus dem Standardmodell mit Hilfe störungstheoretischer Methoden ist schwierig. Die Herausforderungen liegen in der Berechnung immer komplizierterer Feynman-Integrale und dem zunehmenden Umfang der Rechnungen für Streuprozesse mit vielen Teilchen. Neue mathematische Methoden müssen daher entwickelt und die zunehmende Komplexität durch eine Automatisierung der Berechnungen gezähmt werden. In Kapitel 2 wird eine kurze Einführung in diese Thematik gegeben. Die nachfolgenden Kapitel sind dann einzelnen Beiträgen zur Lösung dieser Probleme gewidmet. In Kapitel 3 stellen wir ein Projekt vor, das für die Analysen der LHC-Daten wichtig sein wird. Ziel des Projekts ist die Berechnung von Einschleifen-Korrekturen zu Prozessen mit vielen Teilchen im Endzustand. Das numerische Verfahren wird dargestellt und erklärt. Es verwendet Helizitätsspinoren und darauf aufbauend eine neue Tensorreduktionsmethode, die Probleme mit inversen Gram-Determinanten weitgehend vermeidet. Es wurde ein Computerprogramm entwickelt, das die Berechnungen automatisiert ausführen kann. Die Implementierung wird beschrieben und Details über die Optimierung und Verifizierung präsentiert. Mit analytischen Methoden beschäftigt sich das vierte Kapitel. Darin wird das xloopsnosp-Projekt vorgestellt, das verschiedene Feynman-Integrale mit beliebigen Massen und Impulskonfigurationen analytisch berechnen kann. Die wesentlichen mathematischen Methoden, die xloops zur Lösung der Integrale verwendet, werden erklärt. Zwei Ideen für neue Berechnungsverfahren werden präsentiert, die sich mit diesen Methoden realisieren lassen. Das ist zum einen die einheitliche Berechnung von Einschleifen-N-Punkt-Integralen, und zum anderen die automatisierte Reihenentwicklung von Integrallösungen in höhere Potenzen des dimensionalen Regularisierungsparameters $epsilon$. Zum letzteren Verfahren werden erste Ergebnisse vorgestellt. Die Nützlichkeit der automatisierten Reihenentwicklung aus Kapitel 4 hängt von der numerischen Auswertbarkeit der Entwicklungskoeffizienten ab. Die Koeffizienten sind im allgemeinen Multiple Polylogarithmen. In Kapitel 5 wird ein Verfahren für deren numerische Auswertung vorgestellt. Dieses neue Verfahren für Multiple Polylogarithmen wurde zusammen mit bekannten Verfahren für andere Polylogarithmus-Funktionen als Bestandteil der CC-Bibliothek ginac implementiert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wird die Faktorisierungsmethode zur Erkennung von Gebieten mit sprunghaft abweichenden Materialparametern untersucht. Durch eine abstrakte Formulierung beweisen wir die der Methode zugrunde liegende Bildraumidentität für allgemeine reelle elliptische Probleme und deduzieren bereits bekannte und neue Anwendungen der Methode. Für das spezielle Problem, magnetische oder perfekt elektrisch leitende Objekte durch niederfrequente elektromagnetische Strahlung zu lokalisieren, zeigen wir die eindeutige Lösbarkeit des direkten Problems für hinreichend kleine Frequenzen und die Konvergenz der Lösungen gegen die der elliptischen Gleichungen der Magnetostatik. Durch Anwendung unseres allgemeinen Resultats erhalten wir die eindeutige Rekonstruierbarkeit der gesuchten Objekte aus elektromagnetischen Messungen und einen numerischen Algorithmus zur Lokalisierung der Objekte. An einem Musterproblem untersuchen wir, wie durch parabolische Differentialgleichungen beschriebene Einschlüsse in einem durch elliptische Differentialgleichungen beschriebenen Gebiet rekonstruiert werden können. Dabei beweisen wir die eindeutige Lösbarkeit des zugrunde liegenden parabolisch-elliptischen direkten Problems und erhalten durch eine Erweiterung der Faktorisierungsmethode die eindeutige Rekonstruierbarkeit der Einschlüsse sowie einen numerischen Algorithmus zur praktischen Umsetzung der Methode.