10 resultados para Electrostatic Separation
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Noninvasive molecular-imaging technologies are playing a keyrole in drug discovery, development and delivery. Positron Emission Tomography (PET) is such a molecular imaging technology and a powerful tool for the observation of various diseases. However, it is limited by the availability of agents with high selectivity to the target and a physical half-life of the used positron emitting nuclide which matches the biological half-life of the observed process. For the long lasting enrichment of antibodies in tumor tissue few suitable isotopes for PET imaging are currently available. The element arsenic provides a range of isotopes, which could be used for diagnosis and also for endoradiotherapy. This work describes the development of radiochemical separation procedures to separate arsenic isotopes in no-carrier-added (nca) purity from reactor or cyclotron irradiated targets, the development and evaluation of a labeling chemistry to attach these separated arsenic isotopes to monoclonal antibodies, the in vitro and in vivo evaluation of antibodies labeled with radioactive arsenic isotopes and the molecular imaging using small animal PET.
Resumo:
Diskotische Hexa-peri-hexabenzocoronene (HBC) als molekulare, definierte graphitische Substrukturen sind bereits seit langem Gegenstand von Untersuchungen zu der Delokalisierung von π-Elektronen. In dieser Arbeit wurden zusätzlich Platin-Komplexe in das periphere Substitutionsmuster von HBC eingeführt. Dies führte zu einer Verbesserung der Emission von dem angeregten Triplett-Zustand in den Singulett-Grundzustand mit einer zusätzlichen Verlängerung der Lebensdauer des angeregten Zustandes. Zusätzlich erlaubte diese Konfiguration ein schnelles Intersystem-Crossing mittels einer verstärkten Spin-Orbit Kopplung, die sowohl bei tiefen Temperaturen, als auch bei Raumtemperatur exklusiv zu Phosphoreszenz (T1→S0) führte. Das Verständniss über solche Prozesse ist auch essentiell für die Entwicklung verbesserter opto-elektronischer Bauteile. Die Erstellung von exakt definierten molekularen Strukturen, die speziell für spezifische Interaktionen hergestellt wurden, machten eine Inkorporation von hydrophoben-hydrophilen, wasserstoffverbrückten oder elektrostatischen funktionalisierten Einheiten notwendig, um damit den supramolekularen Aufbau zu kontrollieren. Mit Imidazolium-Salzen funktionalisierte HBC Derivate wurden zu diesem Zwecke hergestellt. Eine interessante Eigenschaft dieser Moleküle ist ihre Amphiphilie. Dies gestattete die Untersuchung ihrer Eigenschaften in einem polaren Solvens und sowohl der Prozessierbarkeit als auch der Faserbildung auf Siliziumoxid-Trägern. Abhängig vom Lösungsmittel und der gewählten Konditionen konnten hochkristalline Fasern erhalten werden. Durch eine Substitution der HBCs mit langen, sterisch anspruchsvollen Seitenketten, konnte durch eine geeignete Prozessierung eine homöotrope Ausrichtung auf Substraten erreicht werden, was dieses Material interessant für photovoltaische Applikationen macht. Neuartige Polyphenylen-Metall-Komplexe mit diskotischen, linearen und dendritischen Geometrien wurden mittels einer einfachen Reaktion zwischen Co2(CO)8 und Ethinyl-Funktionalitäten in Dichlormethan hergestellt. Nach der Pyrolyse dieser Komplexe ergaben sich unterschiedliche Kohlenstoff-Nanopartikel, inklusive Nanoröhren, graphitischen Nanostäben und Kohlenstoff/Metall Hybrid Komplexe, die durch Elektronenmikroskopie untersucht wurden. Die resultierenden Strukturen waren dabei abhängig von der Zusammensetzung und Struktur der Ausgangssubstanzen. Anhand dieser Resultate ergeben sich diverse Möglichkeiten, um den Mechanismus, der zur Herstellung graphitischer Nanopartikel führt, besser zu verstehen.
Resumo:
It is investigated that the association of linear cationic model polyelectrolytes with oppositely charged pyrenetetrasulfonate (PY) in aqueous solution. For this purpose water soluble ionenes were prepared via Menschutkin reaction from 1-4-diazabicyclo [2.2.2] octane and e.g. 1,6-dibromohexane and 1,4 dibromotransbuten. The complex formation between dye molecules PY and oppositely charged ionenes (PD4, PD6, PD4-2 and PD4coPD6) of different chemical structures in aqueous solution was studied by light scattering (LS), small angle neutron scattering (SANS), UV-Vis, fluorescence spectroscopy and atomic force microscopy (AFM). Spectrophotometric titration results revealed that PY molecules were bind to ionenes cooperative process due to π-π interaction. Cooperative binding constant KD was determined as 6.4 x 10^6 M^-1 (+ or - 10^5 M^-1). It was found that binding mode and geometry of PY is predominantly depending on inter-charge distances of corresponding ionenes. Resultant complexes have exhibited size and structure variation as a function of charge ratio (L), ionic strength, inter-charge distances. Spherical dye-ionene complexes of which radius of gyration ranging between (RG) 50 and 190 nm have been observed in PD4-PY system while this was not possible with a different ionene (PD6) or either case ionene excess. It was found that most of the PD4-PY complexes had RG / RH ~ 0.78. Based on the AFM and LS results, spherical complexes have certain colloidal stability and their size can effectively controlled by changing the L.
Electrostatic supramolecular assembly of charged dendritic polymers and their biological application
Resumo:
The aim of this study was the development of functional multilayer films through electrostatic layer by layer (LbL) assembly of dendritic macromolecules, the investigation of the fundamental properties of these multilalyered films and the study of their biological applications. rnThe synthesis of the anionic hyperbranched polyglycerols (hbPG) and the preparation of multilayers made of hbPG/phosphorus dendrimer as well as the influences of deposition conditions on multilayers were reported. The thicknesses of multilayer films increase with a decrease of molecular weight of anionic hbPGs. The multilayer films fabricated by low molecular weight hbPGs grow less regularly due to the less charged carboxylic acid groups providing the relative weaker electrostatic forces for the deposition. The thicknesses of multilayer films are reduced with increasing pH values and decreasing the concentration of NaCl. The observed changes of multilayer thickness and surface morphology could be interpreted with the aid of theories regarding the charge density and conformation of the anionic hbPG chains in solution. rnBesides the study of fundamental properties of hbPG/phosphorus multilayer films, antifouling thin films derived from hbPG layers were developed. The antifouling properties of hbPG layers were found to correlate with factors of the molecular weight of anionic hbPG and the film thickness. It was demonstrated that anionic hbPG single layer with highest molecular weight can reduce non specific protein adsorption more efficiently than single layer with lower molecular weight and all the hbPG bilayers possessed excellent property of antifouling. rnPhosphorus dendrimer multilayers were successfully prepared as the platforms to detect DNA immobilization and hybridization. The effect of NaCl concentration on the multilayer film thickness was evaluated to obtain the optimized film thickness. Making use of the multilayer deposited at the optimized condition as a substrate, a high loading of DNA probes was achieved through covalent coupling of probe DNA with the as-formed multilayer films. The hybridization of target DNA with immobilized probe DNA was then carried out and studied by SPFS. The limit of detection upon hybridization was estimated on various dendrimer multilayer platforms. The minimum detection concentration for DNA hybridization is in the same order of magnitude compared with other neutral phosphorus dendrimer systems. Furthermore, the LbL deposition of phosphorus dendrimer multilayers provided a mild and simple way to prepare platforms as DNA microarrays. rnBased on the phosphorus dendrimer multilayer systems, dendritic star polymers were employed which have more reactive groups than that phosphorus dendrimers. The as-assembled dendritic star polymer multilayer films exhibited such distinct morphology characteristics that they underwent extensive structural reorganization upon post-treatment under different pH conditions. Kinetic binding of probe DNA molecules on the outermost negatively charged dendritic surface was studied by SPR as well. The binding capacities of probe DNA on the multilayer surfaces fabricated from the first-generation and the second-generation of dendritic star polymers were compared. The improved binding capacity was achieved from the second-generation of dendritic star polymer multilayer films due to their more reactive groups. DNA hybridization reaction on dendritic multilayer films was investigated by SPFS. The similar hybridization behaviors were found on both multilayer surfaces. Meanwhile, the hybridization kinetic affinities were compared with that of phosphorus dendrimer multilayer surfaces and showed improved detection sensitivity than phosphorus dendrimer multilayer films.rn
Resumo:
The electromagnetic form factors of the proton are fundamental quantities sensitive to the distribution of charge and magnetization inside the proton. Precise knowledge of the form factors, in particular of the charge and magnetization radii provide strong tests for theory in the non-perturbative regime of QCD. However, the existing data at Q^2 below 1 (GeV/c)^2 are not precise enough for a hard test of theoretical predictions.rnrnFor a more precise determination of the form factors, within this work more than 1400 cross sections of the reaction H(e,e′)p were measured at the Mainz Microtron MAMI using the 3-spectrometer-facility of the A1-collaboration. The data were taken in three periods in the years 2006 and 2007 using beam energies of 180, 315, 450, 585, 720 and 855 MeV. They cover the Q^2 region from 0.004 to 1 (GeV/c)^2 with counting rate uncertainties below 0.2% for most of the data points. The relative luminosity of the measurements was determined using one of the spectrometers as a luminosity monitor. The overlapping acceptances of the measurements maximize the internal redundancy of the data and allow, together with several additions to the standard experimental setup, for tight control of systematic uncertainties.rnTo account for the radiative processes, an event generator was developed and implemented in the simulation package of the analysis software which works without peaking approximation by explicitly calculating the Bethe-Heitler and Born Feynman diagrams for each event.rnTo separate the form factors and to determine the radii, the data were analyzed by fitting a wide selection of form factor models directly to the measured cross sections. These fits also determined the absolute normalization of the different data subsets. The validity of this method was tested with extensive simulations. The results were compared to an extraction via the standard Rosenbluth technique.rnrnThe dip structure in G_E that was seen in the analysis of the previous world data shows up in a modified form. When compared to the standard-dipole form factor as a smooth curve, the extracted G_E exhibits a strong change of the slope around 0.1 (GeV/c)^2, and in the magnetic form factor a dip around 0.2 (GeV/c)^2 is found. This may be taken as indications for a pion cloud. For higher Q^2, the fits yield larger values for G_M than previous measurements, in agreement with form factor ratios from recent precise polarized measurements in the Q2 region up to 0.6 (GeV/c)^2.rnrnThe charge and magnetic rms radii are determined as rn⟨r_e⟩=0.879 ± 0.005(stat.) ± 0.004(syst.) ± 0.002(model) ± 0.004(group) fm,rn⟨r_m⟩=0.777 ± 0.013(stat.) ± 0.009(syst.) ± 0.005(model) ± 0.002(group) fm.rnThis charge radius is significantly larger than theoretical predictions and than the radius of the standard dipole. However, it is in agreement with earlier results measured at the Mainz linear accelerator and with determinations from Hydrogen Lamb shift measurements. The extracted magnetic radius is smaller than previous determinations and than the standard-dipole value.
Resumo:
This work focused mainly on two aspects of kinetics of phase separation in binary mixtures. In the first part, we studied the interplay of hydrodynamics and the phase separation of binary mixtures. A considerably flat container (a laterally extended geometry), at an aspect ratio of 14:1 (diameter: height) was chosen, so that any hydrodynamic instabilities, if they arise, could be tracked. Two binary mixtures were studied. One was a mixture of methanol and hexane, doped with 5% ethanol, which phase separated under cooling. The second was a mixture of butoxyethanol and water, doped with 2% decane, which phase separated under heating. The dopants were added to bring down the phase transition temperature around room temperature.rnrnAlthough much work has been done already on classical hydrodynamic instabilities, not much has been done in the understanding of the coupling between phase separation and hydrodynamic instabilities. This work aimed at understanding the influence of phase separation in initiating any hydrodynamic instability, and also vice versa. Another aim was to understand the influence of the applied temperature protocol on the emergence of patterns characteristic to hydrodynamic instabilities. rnrnOn slowly cooling the system continuously, at specific cooling rates, patterns were observed in the first mixture, at the start of phase separation. They resembled the patterns observed in classical Rayleigh-Bénard instability, which arises when a liquid continuously is heated from below. To suppress this classical convection, the cooling setup was tuned such that the lower side of the sample always remained cooler by a few millikelvins, relative to the top. We found that the nature of patterns changed with different cooling rates, with stable patterns appearing for a specific cooling rate (1K/h). On the basis of the cooling protocol, we estimated a modified Rayleigh number for our system. We found that the estimated modified Rayleigh number is near the critical value for instability, for cooling rates between 0.5K/h and 1K/h. This is consistent with our experimental findings. rnrnThe origin of the patterns, in spite of the lower side being relatively colder with respect to the top, points to two possible reasons. 1) During phase separation droplets of either phases are formed, which releases a latent heat. Our microcalorimetry measurements show that the rise in temperature during the first phase separation is in the order of 10-20millikelvins, which in some cases is enough to reverse the applied temperature bias. Thus phase separation in itself initiates a hydrodynamic instability. 2) The second reason comes from the cooling protocol itself. The sample was cooled from above and below. At sufficiently high cooling rates, there are situations where the interior of the sample is relatively hotter than both top and bottom of the sample. This is sufficient to create an instability within the cell. Our experiments at higher cooling rates (5K/h and above) show complex patterns, which hints that there is enough convection even before phase separation occurs. Infact, theoretical work done by Dr.Hayase show that patterns could arise in a system without latent heat, with symmetrical cooling from top and bottom. The simulations also show that the patterns do not span the entire height of the sample cell. This is again consistent with the cell sizes measured in our experiment.rnrnThe second mixture also showed patterns at specific heating rates, when it was continuously heated inducing phase separation. In this case though, the sample was turbid for a long time until patterns appeared. A meniscus was most probably formed before the patterns emerged. We attribute the reason of patterns in this case to Marangoni convection, which is present in systems with an interface, where local differences in surface tension give rise to an instability. Our estimates for the Rayleigh number also show a significantly lower number than that's required for RB-type instability.rnrnIn the first part of the work, therefore, we identify two different kinds of hydrodynamic instabilities in two different mixtures. Both are observed during, or after the first phase separation. Our patterns compare with the classical convection patterns, but here the origins are from phase separation and the cooling protocol.rnrnIn the second part of the work, we focused on the kinetics of phase separation in a polymer solution (polystyrene and methylcyclohexane), which is cooled continuously far down into the two phase region. Oscillations in turbidity, denoting material exchange between the phases are seen. Three processes contribute to the phase separation: Nucleation of droplets, their growth and coalescence, and their subsequent sedimentation. Experiments in low molecular binary mixtures had led to models of oscillation [43] which considered sedimentation time scales much faster than the time scales of nucleation and growth. The size and shape of the sample therefore did not matter in such situations. The oscillations in turbidity were volume-dominated. The present work aimed at understanding the influence of sedimentation time scales for polymer mixtures. Three heights of the sample with same composition were studied side by side. We found that periods increased with the sample height, thus showing that sedimentation time determines the period of oscillations in the polymer solutions. We experimented with different cooling rates and different compositions of the mixture, and we found that periods are still determined by the sample height, and therefore by sedimentation time. rnrnWe also see that turbidity emerges in two ways; either from the interface, or throughout the sample. We suggest that oscillations starting from the interface are due to satellite droplets that are formed on droplet coalescence at the interface. These satellite droplets are then advected to the top of the sample, and they grow, coalesce and sediment. This type of an oscillation wouldn't require the system to pass the energy barrier required for homogenous nucleation throughout the sample. This mechanism would work best in sample where the droplets could be effectively advected throughout the sample. In our experiments, we see more interface dominated oscillations in the smaller cells and lower cooling rates, where droplet advection is favourable. In larger samples and higher cooling rates, we mostly see that the whole sample becomes turbid homogenously, which requires the system to pass the energy barrier for homogenous nucleation.rnrnOscillations, in principle, occur since the system needs to pass an energy barrier for nucleation. The height of the barrier decreases with increasing supersaturation, which in turn is from the temperature ramp applied. This gives rise to a period where the system is clear, in between the turbid periods. At certain specific cooling rates, the system can follow a path such that the start of a turbid period coincides with the vanishing of the last turbid period, thus eliminating the clear periods. This means suppressions of oscillations altogether. In fact we experimentally present a case where, at a certain cooling rate, oscillations indeed vanish. rnrnThus we find through this work that the kinetics of phase separation in polymer solution is different from that of a low molecular system; sedimentation time scales become relevant, and therefore so does the shape and size of the sample. The role of interface in initiating turbid periods also become much more prominent in this system compared to that in low molecular mixtures.rnrnIn summary, some fundamental properties in the kinetics of phase separation in binary mixtures were studied. While the first part of the work described the close interplay of the first phase separation with hydrodynamic instabilities, the second part investigated the nature and determining factors of oscillations, when the system was cooled deep into the two phase region. Both cases show how the geometry of the cell can affect the kinetics of phase separation. This study leads to further fundamental understandings of the factors contributing to the kinetics of phase separation, and to the understandings of what can be controlled and tuned in practical cases. rn
Resumo:
This thesis was undertaken to explore possible applications of high gradient magnetic separation (HGMS) for the separation of RBCs infected with Plasmodium falciparum, with the dual aim of establishing a novel and superior method for isolating late-stage infected cells, and of obtaining synchronized cell cultures.rnThe presented work presents protocols for HGMS of parasitized RBCs that fulfil these aims. Late-stage parasitized cell can be isolated essentially devoid of contamination with non-infected and ring-stage infected cells. Such an easy method for a highly quantitative and qualitative purification has not yet been reported. Synchronous cultures can be obtained both following depletion of late-stage infected cells, and following isolation of the latter. The quality of synchronization cultures matches that of sorbitol lysis, the current standard method for malaria culture synchronization. An advantage of HGMS is the avoidance of osmotic stress for RBCs. The new methods further have the appeal of high reproducibility, cost-effectiveness, and simple protocol.rnIt should be possible to take the methods beyond Plasmodium infected RBCs. Most magnetic separation techniques in the sector of biomedical research employ columns with a hydrophilic polymer-coated matrix. Our procedure employs an optimized buffer system. Polymer coating becomes unnecessary and uncoated columns are available at a fraction of the cost.
Resumo:
This thesis describes the investigation of systematically varied organic molecules for use in molecular self-assembly processes. All experiments were performed using high-resolution non-contact atomic force microscopy under UHV conditions and at room temperature. Using this technique, three different approaches for influencing intermolecular and molecule-surface interaction on the insulating calcite(10.4) surface were investigated by imaging the structure formation at the molecular scale. I first demonstrated the functionalization of shape-persistent oligo(p-benzamide)s that was engineered by introducing different functional groups and investigating their effect on the structural formation on the sample surface. The molecular core was designed to provide significant electrostatic anchoring towards the surface, while at the same time maintaining the flexibility to fine-tune the resulting structure by adjusting the intermolecular cohesion energy. The success of this strategy is based on a clear separation of the molecule-substrate interaction from the molecule-molecule interaction. My results show that sufficient molecule-surface anchoring can be achieved without restricting the structural flexibility that is needed for the design of complex molecular systems. Three derivatives of terephthalic acid (TPA) were investigated in chapter 7. Here, the focus was on changing the adhesion to the calcite surface by introducing different anchor functionalities to the TPA backbone. For all observed molecules, the strong substrate templating effect results in molecular structures that are strictly oriented along the calcite main crystal directions. This templating is especially pronounced in the case of 2-ATPA where chain formation on the calcite surface is observed in contrast to the formation of molecular layers in the bulk. At the same time, the amino group of 2-ATPA proved an efficient anchor functionality, successfully stabilizing the molecular chains on the sample surface. These findings emphasizes, once again, the importance of balancing and fine-tuning molecule-molecule and molecule-surface interactions in order to achieve stable, yet structurally flexible molecular arrangements on the sample surface. In the last chapter, I showed how the intrinsic property of molecular chirality decisively influences the structure formation in molecular self-assembly. This effect is especially pronounced in the case of the chiral heptahelicene-2-carboxylic acid. Deposition of the enantiopure molecules results in the formation of homochiral islands on the sample surface which is in sharp contrast to the formation of uni-directional double rows upon deposition of the racemate onto the same surface. While it remained uncertain from these previous experiments whether the double rows are composed of hetero- or homochiral molecules, I could clearly answer that question here and demonstrate that the rows are of heterochiral origin. Chirality, thus, proves to be another important parameter to steer the intermolecular interaction on surfaces. Altogether, the results of this thesis demonstrate that, in order to successfully control the structure formation in molecular self-assembly, the correct combination of molecule and surface properties is crucial. This is of special importance when working on substrates that exhibit a strong influence on the structure formation, such as the calcite(10.4) surface. Through the systematic variation of functional groups several important parameters that influence the balance between molecule-surface and molecule-molecule interaction were identified here, and the results of this thesis can, thus, act as a guideline for the rational design of molecules for use in molecular self-assembly.
Resumo:
In dieser Dissertation wird die Ladungsträgergeneration und -rekombination in neuen polymeren Absorbermaterialien für organische Solarzellen untersucht. Das Verständnis dieser Prozesse ist wesentlich für die Entwicklung neuer photoaktiver Materialsysteme, die hohe Effizienzen erzielen und organische Solarzellen konkurrenzfähig im Bereich der erneuerbaren Energien machen. Experimentell verwendet diese Arbeit hauptsächlich die Methode der transienten Absorptionsspektroskopie, die sich für die Untersuchung photophysikalischer Prozesse auf einer Zeitskala von 100 fs bis 1 ms als sehr leistungsfähig erweist. Des Weiteren wird eine soft-modeling Methode vorgestellt, die es ermöglicht, photophysikalische Prozesse aus einer gemessenen transienten Absorptions-Datenmatrix zu bestimmen, wenn wenig a priori Kenntnisse der Reaktionskinetiken vorhanden sind. Drei unterschiedliche Donor:Akzeptor-Systeme werden untersucht; jedes dieser Systeme stellt eine andere Herangehensweise zur Optimierung der Materialien dar in Bezug auf Lichtabsorption über einen breiten Wellenlängenbereich, effiziente Ladungstrennung und schnellen Ladungstransport. Zuerst wird ein Terpolymer untersucht, das aus unterschiedlichen Einheiten für die Lichtabsorption und den Ladungstransport besteht. Es wird gezeigt, dass es möglich ist, den Fluss angeregter Zustände vom Chromophor auf die Transporteinheit zu leiten. Im zweiten Teil wird der Einfluss von Kristallinität auf die freie Ladungsträgergeneration mit einer Folge von ternären Mischungen, die unterschiedliche Anteile an amorphem und semi-kristallinem Polymer enthalten, untersucht. Dabei zeigt es sich, dass mit steigendem amorphen Polymeranteil sowohl der Anteil der geminalen Ladungsträgerrekombination erhöht als auch die nicht-geminale Rekombination schneller ist. Schlussendlich wird ein System untersucht, in dem sowohl Donor als auch Akzeptor Polymere sind, was zu verbesserten Absorptionseigenschaften führt. Die Rekombination von Ladungstransferzuständen auf der unter 100 ps Zeitskala stellt hier den hauptsächliche Verlustkanal dar, da freie Ladungsträger nur an Grenzflächen erzeugt werden können, an denen Donor und Akzeptor face-to-face zueinander orientiert sind. Darüber hinaus wird festgestellt, dass weitere 40-50% der Ladungsträger durch die Rekombination von Grenzflächenzuständen verloren gehen, die aus mobilen Ladungsträgern geminal gebildet werden.
Resumo:
The world's rising demand of energy turns the development of sustainable and more efficient technologies for energy production and storage into an inevitable task. Thermoelectric generators, composed of pairs of n-type and p-type semiconducting materials, di¬rectly transform waste heat into useful electricity. The efficiency of a thermoelectric mate¬rial depends on its electronic and lattice properties, summarized in its figure of merit ZT. Desirable are high electrical conductivity and Seebeck coefficients, and low thermal con¬ductivity. Half-Heusler materials are very promising candidates for thermoelectric applications in the medium¬ temperature range such as in industrial and automotive waste heat recovery. The advantage of Heusler compounds are excellent electronic properties and high thermal and mechanical stability, as well as their low toxicity and elemental abundance. Thus, the main obstacle to further enhance their thermoelectric performance is their relatively high thermal conductivity.rn rnIn this work, the thermoelectric properties of the p-type material (Ti/Zr/Hf)CoSb1-xSnx were optimized in a multistep process. The concept of an intrinsic phase separation has recently become a focus of research in the compatible n-type (Ti/Zr/Hf)NiSn system to achieve low thermal conductivities and boost the TE performance. This concept is successfully transferred to the TiCoSb system. The phase separation approach can form a significant alternative to the previous nanostructuring approach via ball milling and hot pressing, saving pro¬cessing time, energy consumption and increasing the thermoelectric efficiency. A fundamental concept to tune the performance of thermoelectric materials is charge carrier concentration optimization. The optimum carrier concentration is reached with a substitution level for Sn of x = 0.15, enhancing the ZT about 40% compared to previous state-of-the-art samples with x = 0.2. The TE performance can be enhanced further by a fine-tuning of the Ti-to-Hf ratio. A correlation of the microstructure and the thermoelectric properties is observed and a record figure of merit ZT = 1.2 at 710°C was reached with the composition Ti0.25Hf0.75CoSb0.85Sn0.15.rnTowards application, the long term stability of the material under actual conditions of operation are an important issue. The impact of such a heat treatment on the structural and thermoelectric properties is investigated. Particularly, the best and most reliable performance is achieved in Ti0.5Hf0.5CoSb0.85Sn0.15, which reached a maximum ZT of 1.1 at 700°C. The intrinsic phase separation and resulting microstructure is stable even after 500 heating and cooling cycles.