7 resultados para Eastern and Western Transportation Company.

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract In this study structural and finite strain data are used to explore the tectonic evolution and the exhumation history of the Chilean accretionary wedge. The Chilean accretionary wedge is part of a Late Paleozoic subduction complex that developed during subduction of the Pacific plate underneath South America. The wedge is commonly subdivided into a structurally lower Western Series and an upper Eastern Series. This study shows the progressive development of structures and finite strain from the least deformed rocks in the eastern part of the Eastern Series of the accretionary wedge to higher grade schist of the Western Series at the Pacific coast. Furthermore, this study reports finite-strain data to quantify the contribution of vertical ductile shortening to exhumation. Vertical ductile shortening is, together with erosion and normal faulting, a process that can aid the exhumation of high-pressure rocks. In the east, structures are characterized by upright chevron folds of sedimentary layering which are associated with a penetrative axial-plane foliation, S1. As the F1 folds became slightly overturned to the west, S1 was folded about recumbent open F2 folds and an S2 axial-plane foliation developed. Near the contact between the Western and Eastern Series S2 represents a prominent subhorizontal transposition foliation. Towards the structural deepest units in the west the transposition foliation became progressively flat lying. Finite-strain data as obtained by Rf/Phi and PDS analysis in metagreywacke and X-ray texture goniometry in phyllosilicate-rich rocks show a smooth and gradual increase in strain magnitude from east to west. There are no evidences for normal faulting or significant structural breaks across the contact of Eastern and Western Series. The progressive structural and strain evolution between both series can be interpreted to reflect a continuous change in the mode of accretion in the subduction wedge. Before ~320-290 Ma the rocks of the Eastern Series were frontally accreted to the Andean margin. Frontal accretion caused horizontal shortening and upright folds and axial-plane foliations developed. At ~320-290 Ma the mode of accretion changed and the rocks of the Western Series were underplated below the Andean margin. This basal accretion caused a major change in the flow field within the wedge and gave rise to vertical shortening and the development of the penetrative subhorizontal transposition foliation. To estimate the amount that vertical ductile shortening contributed to the exhumation of both units finite strain is measured. The tensor average of absolute finite strain yield Sx=1.24, Sy=0.82 and Sz=0.57 implying an average vertical shortening of ca. 43%, which was compensated by volume loss. The finite strain data of the PDS measurements allow to calculate an average volume loss of 41%. A mass balance approximates that most of the solved material stays in the wedge and is precipitated in quartz veins. The average of relative finite strain is Sx=1.65, Sy=0.89 and Sz=0.59 indicating greater vertical shortening in the structurally deeper units. A simple model which integrates velocity gradients along a vertical flow path with a steady-state wedge is used to estimate the contribution of deformation to ductile thinning of the overburden during exhumation. The results show that vertical ductile shortening contributed 15-20% to exhumation. As no large-scale normal faults have been mapped the remaining 80-85% of exhumation must be due to erosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accretionary shells of bivalve mollusks can provide environmental information, such as water temperature, precipitation, freshwater fluxes, primary productivity and anthropogenic activities in the form of variable growth rates and variable geochemical properties, such as stable oxygen and carbon isotopes. However, paleoenvironmental reconstructions are constrained by uncertainties about isotopic equilibrium fractionation during shell formation, which is generally acknowledged as a reasonable assumption for bivalves, but it has been disputed in several species. Furthermore, the variation in shell growth rates is accepted to rely on multiple environmental variables, such as temperature, food availability and salinity, but can differ from species to species. Therefore, it is necessary to perform species-specific calibration studies for both isotope proxies and shell growth rates before they can be used with confidence for environmental interpretations of the past. Accordingly, the principal objective of this Ph.D research is to examine the reliability of selected bivalve species, the long-lived Eurhomalea exalbida (Dillwyn), the short-lived and fast growing species Paphia undulata (Born 1778), and the freshwater mussel Margaritifera falcata (Gould 1850), as paleoenvironmental proxy archives.rnThe first part is focused on δ18Oshell and shell growth history of live-collected E. exalbida from the Falkland Islands. The most remarkable finding, however, is that E. exalbida formed its shell with an offset of -0.48‰ to -1.91‰ from the expected oxygen isotopic equilibrium with the ambient water. If this remained unnoticed, paleotemperature estimates would overestimate actual water temperatures by 2.1-8.3°C. With increasing ontogenetic age, the discrepancy between measured and reconstructed temperatures increased exponentially, irrespective of the seasonally varying shell growth rates. This study clearly demonstrates that, when the disequilibrium fractionation effect is taken into account, E. exalbida can serve as a high-resolution paleoclimate archive for the southern South America. The species therefore provides quantifiable temperature estimates, which yields new insights into long-term paleoclimate dynamics for mid to high latitudes on the southern hemisphere.rnThe stable carbon isotope of biogenic carbonates is generally considered to be useful for reconstruction of seawater dissolved inorganic carbon. The δ13Cshell composition of E. exalbida was therefore, investigated in the second part of this study. This chapter focuses on inter-annual and intra-annual variations in δ13Cshell. Environmental records in δ13Cshell are found to be strongly obscured by changes in shell growth rates, even if removing the ontogenetic decreasing trend. This suggests that δ13Cshell in E. exalbida may not be useful as an environmental proxy, but a potential tool for ecological investigations. rnIn addition to long-lived bivalve species, short-lived species that secrete their shells extremely fast, can also be useful for environmental reconstructions, especially as a high-resolution recorder. Therefore, P. undulata from Daya Bay, South China Sea was utilized in Chapter 4 to evaluate and establish a potential proxy archive for past variations of the East Asian monsoon on shorter time-scales. The δ18Oshell can provide qualitative estimates of the amount of monsoonal rain and terrestrial runoff and the δ13Cshell likely reflect the relative amount of isotopically light terrestrial carbon that reaches the ocean during the summer monsoon season. Therefore, shells of P. undulata can provide serviceable proxy archives to reconstruct the frequency of exceptional summer monsoons in the past. The relative strength of monsoon-related precipitation and associated changes in ocean salinity and the δ13C ratios of the dissolved inorganic carbon signature (δ13CDIC) can be estimated from the δ18Oshell and δ13Cshell values as well as shell growth patterns. rnIn the final part, the freshwater pearl shell M. falcata from four rivers in British Columbia, Canada was preliminarily studied concerning the lifespans and the shell growth rates. Two groups separated by the Georgia Strait can be clearly distinguished. Specimens from the western group exhibit a shorter lifespan, while the eastern group live longer. Moreover, the average lifespan seems to decrease from south to north. The computed growth equations from the eastern and western groups differ as well. The western group exhibits a lower growth rate, while bivalves from the eastern group grow faster. The land use history seems to be responsible for the differences in lifespans of the specimens from the two groups. Differences in growth rate may be induced by differences in water temperature or nutrient input also related to the land use activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focusses on the tectonic evolution and geochronology of part of the Kaoko orogen, which is part of a network of Pan-African orogenic belts in NW Namibia. By combining geochemical, isotopic and structural analysis, the aim was to gain more information about how and when the Kaoko Belt formed. The first chapter gives a general overview of the studied area and the second one describes the basis of the Electron Probe Microanalysis dating method. The reworking of Palaeo- to Mesoproterozoic basement during the Pan-African orogeny as part of the assembly of West Gondwana is discussed in Chapter 3. In the study area, high-grade rocks occupy a large area, and the belt is marked by several large-scale structural discontinuities. The two major discontinuities, the Sesfontein Thrust (ST) and the Puros Shear Zone (PSZ), subdivide the orogen into three tectonic units: the Eastern Kaoko Zone (EKZ), the Central Kaoko Zone (CKZ) and the Western Kaoko Zone (WKZ). An important lineament, the Village Mylonite Zone (VMZ), has been identified in the WKZ. Since plutonic rocks play an important role in understanding the evolution of a mountain belt, zircons from granitoid gneisses were dated by conventional U-Pb, SHRIMP and Pb-Pb techniques to identify different age provinces. Four different age provinces were recognized within the Central and Western part of the belt, which occur in different structural positions. The VMZ seems to mark the limit between Pan-African granitic rocks east of the lineament and Palaeo- to Mesoproterozoic basement to the west. In Chapter 4 the tectonic processes are discussed that led to the Neoproterozoic architecture of the orogen. The data suggest that the Kaoko Belt experienced three main phases of deformation, D1-D3, during the Pan-African orogeny. Early structures in the central part of the study area indicate that the initial stage of collision was governed by underthrusting of the medium-grade Central Kaoko zone below the high-grade Western Kaoko zone, resulting in the development of an inverted metamorphic gradient. The early structures were overprinted by a second phase D2, which was associated with the development of the PSZ and extensive partial melting and intrusion of ~550 Ma granitic bodies in the high-grade WKZ. Transcurrent deformation continued during cooling of the entire belt, giving rise to the localized low-temperature VMZ that separates a segment of elevated Mesoproterozoic basement from the rest of the Western zone in which only Pan-African ages have so far been observed. The data suggest that the boundary between the Western and Central Kaoko zones represents a modified thrust zone, controlling the tectonic evolution of the Kaoko belt. The geodynamic evolution and the processes that generated this belt system are discussed in Chapter 5. Nd mean crustal residence ages of granitoid rocks permit subdivision of the belt into four provinces. Province I is characterised by mean crustal residence ages <1.7 Ga and is restricted to the Neoproterozoic granitoids. A wide range of initial Sr isotopic values (87Sr/86Sri = 0.7075 to 0.7225) suggests heterogeneous sources for these granitoids. The second province consists of Mesoproterozoic (1516-1448 Ma) and late Palaeo-proterozoic (1776-1701 Ma) rocks and is probably related to the Eburnian cycle with Nd model ages of 1.8-2.2 Ga. The eNd i values of these granitoids are around zero and suggest a predominantly juvenile source. Late Archaean and middle Palaeoproterozoic rocks with model ages of 2.5 to 2.8 Ga make up Province III in the central part of the belt and are distinct from two early Proterozoic samples taken near the PSZ which show even older TDM ages of ~3.3 Ga (Province IV). There is no clear geological evidence for the involvement of oceanic lithosphere in the formation of the Kaoko-Dom Feliciano orogen. Chapter 6 presents the results of isotopic analyses of garnet porphyroblasts from high-grade meta-igneous and metasedimentary rocks of the sillimanite-K-feldspar zone. Minimum P-T conditions for peak metamorphism were calculated at 731±10 °C at 6.7±1.2 kbar, substantially lower than those previously reported. A Sm-Nd garnet-whole rock errorchron obtained on a single meta-igneous rock yielded an unexpectedly old age of 692±13 Ma, which is interpreted as an inherited metamorphic age reflecting an early Pan-African granulite-facies event. The dated garnets survived a younger high-grade metamorphism that occurred between ca. 570 and 520 Ma and apparently maintained their old Sm-Nd isotopic systematics, implying that the closure temperature for garnet in this sample was higher than 730 °C. The metamorphic peak of the younger event was dated by electronmicroprobe on monazite at 567±5 Ma. From a regional viewpoint, it is possible that these granulites of igneous origin may be unrelated to the early Pan-African metamorphic evolution of the Kaoko Belt and may represent a previously unrecognised exotic terrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this PhD thesis, a multidisciplinary study has been carried out on metagranitoids and paragneisses from the Eastern Rhodope Massif, northern Greece, to decipher the pre-Alpine magmatic and geodynamic evolution of the Rhodope Massif and to correlate the eastern part with the western/central parts of the orogen. The Rhodope Massif, which occupies the major part of NE Greece and S Bulgaria, represents the easternmost part of the Internal Hellenides. It is regarded as a nappe stack of high-grade units, which is classically subdivided into an upper unit and a lower unit, separated by a SSE-NNW trending thrust plane, the Nestos thrust. Recent research in the central Greek Rhodope Massif revealed that the two units correspond to two distinct terranes of different age, the Permo-Carboniferous Thracia Terrane, which was overthrusted by the Late Jurassic/Early Cretaceous Rhodope Terrane. These terranes are separated by the Nestos suture, a composite zone comprising metapelites, metabasites, metagranitoids and marbles, which record high-pressure and even ultrahigh-pressure metamorphism in places. Similar characteristic rock associations were investigated during this study along several well-constrained cross sections in vincity to the Ada, Sidiro and Kimi villages in the Greek Eastern Rhodope Massif. Field evidence revealed that the contact zone of the two terranes in the Eastern Rhodope Massif is characterized by a mélange of metapelites, migmatitic amphibolites/eclogites, strongly sheared orthogneisses and marbles. The systematical occurrence of this characteristic rock association between the terranes implies that the Nestos suture is a continuous belt throughout the Greek Rhodope Massif. In this study, a new UHP locality could be established and for the first time in the Greek Rhodope, metamorphic microdiamonds were identified in situ in their host zircons using Laser-Raman spectroscopy. The presence of the diamonds as well as element distribution patterns of the zircons, obtained by TOF-SIMS, indicate metamorphic conditions of T > 1000 °C and P > 4 GPa. The high-pressure and ultrahigh-pressure rocks of the mélange zone are considered to have formed during the subduction of the Nestos Ocean in Jurassic times at ~150 Ma. Melting of metapelitic rocks at UHP conditions facilitated the exhumation to lower crustal levels. To identify major crust forming events, basement granitoids were dated by LA-SF-ICPMS and SHRIMP-II U-Pb analyses of zircons. The geochronological results revealed that the Eastern Rhodope Massif consists of two crustal units, a structurally lower Permo-Carboniferous unit corresponding to the Thracia Terrane and a structurally upper Late Jurassic/Early Cretaceous unit corresponding to the Rhodope Terrane, like it was documented for the Central Rhodope Massif. Inherited zircons in the orthogneisses from the Thracia Terrane of the Eastern Rhodope Massif indicate the presence of a pre-existing Neoproterozoic and Ordovician-Silurian basement in this region. Triassic magmatism is witnessed by the zircons of few orthogneisses from the easternmost Rhodope Massif and is interpreted to be related to rifting processes. Whole-rock major and trace element analyses indicate that the metagranitoids from both terranes originated in a subduction-related magmatic-arc environment. The Sr-Nd isotope data for both terranes of the Eastern and Central Rhodope Massif suggest a mixed crust-mantle source with variable contributions of older crustal material as already indicated by the presence of inherited zircons. Geochemical and isotopic similarity of the basement of the Thracia Terrane and the Pelagonian Zone implies that the Thracia Terrane is a fragment of a formerly unique Permo-Carboniferous basement, separated by rifting and opening of the Meliata-Maliac ocean system in Triassic times. A branch of the Meliata-Maliac ocean system, the Nestos Ocean, subducted northwards in Late Jurassic times leading to the formation of the Late Jurassic/Early Cretaceous Rhodope magmatic arc on remnants of the Thracia Terrane as suggested by inherited Permo-Carboniferous zircons. The ~150 Ma zircon ages of the orthogneisses from the Rhodope Terrane indicate that subduction-related magmatism and HP/UHP metamorphism occurred during the same subduction phase. Subduction ceased due to the closure of the Nestos Ocean in the Late Jurassic/Early Cretaceous. The post-Jurassic evolution of the Rhodope Massif is characterized by the exhumation of the Rhodope core complex in the course of extensional tectonics associated with late granite intrusions in Eocene to Miocene times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Studie werden strukturgeologische, metamorphe und geochronologische Daten benutzt, um eine Quantifizierung tektonischer Prozesse vorzunehmen, die für die Exhumierung der Kykladischen Blauschiefereinheit in der Ägäis und der Westtürkei verantwortlich waren. Bei den beiden tektonischen Prozessen handelt es sich um: (1) Abschiebungstektonik und (2) vertikale duktile Ausdünnung. Eine finite Verformungsanalyse an Proben der Kykladischen Blauschiefereinheit ermöglicht eine Abschätzung des Beitrags von vertikaler duktiler Ausdünnung an der gesamten Exhumierung. Kalkulationen mit einem eindimensionalen, numerischen Model zeigt, daß vertikale duktile Ausdünnung nur ca. 10% an der gesamten Exhumierung ausmacht. Kinematische, metamorphe und geochronologische Daten erklären die tektonische Natur und die Evolution eines extensionalen Störungssystems auf der Insel Ikaria in der östlichen Ägäis. Thermobarometrische Daten lassen erkennen, daß das Liegende des Störungssystems aus ca. 15 km Tiefe exhumiert wurde. Sowohl Apatit- und Zirkonspaltspurenalter als auch Apatit (U-Th)/He-Alter zeigen, daß sich das extensionale Störungssystem zwischen 11-3 Ma mit einer Geschwindigkeit von ca. 7-8 km/Ma bewegte. Spät-Miozäne Abschiebungen trugen zur Exhumierung der letzten ~5-15 km der Hochdruckgesteine bei. Ein Großteil der Exhumierung der Kykladischen Blauschiefereinheit muß vor dem Miozän stattgefunden haben. Dies wird durch einen Extrusionskeil erklärt, der ca. 30-35 km der Kykladischen Blauschiefereinheit in der Westtürkei exhumierte. 40Ar/39Ar und 87Rb/86Sr Datierungen an Myloniten des oberen Abschiebungskontakts zwischen der Selçuk Decke und der darunterliegenden Ampelos/Dilek Decke der Kykladischen Blauschiefereinheit als auch des unteren Überschiebungskontakts zwischen der Ampelos/Dilek Decke und den darunterliegenden Menderes Decken zeigt, daß sich beide mylonitische Zonen um ca. ~35 Ma formten, was die Existenz eines Spät-Eozänen/Früh-Oligozänen Extrusionskeils beweist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is lively debated how eclogites find their way from deep to mid-crustal levels during exhumation. Different exhumation models for high-pressure and ultrahigh-pressure rocks were suggested in previous studies, based mainly on field observations and less on microstructural studies on the exhumed rocks. The development and improvement of electron microscopy techniques allows it, to focus interest on direct investigations of microstructures and crystallographic properties in eclogites. In this case, it is of importance to study the applicability of crystallographic measurements on eclogites for exhumation processes and to unravel which processes affect eclogite textures. Previous studies suggested a strong relationship between deformation and lattice preferred orientation (LPO) in omphacite but it is still unclear if the deformation is related to the exhumation of eclogites. This study is focused on the questions which processes affect omphacite LPO and if textural investigations of omphacite are applicable for studying eclogite exhumation. Therefore, eclogites from two examples in the Alps and in the Caledonides were collected systematically and investigated with respect to omphacite LPO by using the electron backscattered diffraction (EBSD) technique. Omphacite textures of the Tauern Window (Austria) and the Western Gneiss Region (Norway) were studied to compare lattice preferred orientation with field observations and suggested exhumation models from previous studies. The interpretation of omphacite textures, regarding the deformation regime is mainly based on numerical simulations in previous studies. Omphacite LPO patterns of the Eclogite Zone are clearly independent from any kind of exhumation process. The textures were generated during omphacite growth on the prograde path of eclogite development until metamorphic peak conditions. Field observations in the Eclogite Zone show that kinematics in garnet mica schist, surrounding the eclogites, strongly indicate an extrusion wedge geometry. Stretching lineations show top-N thrusting at the base and a top-S normal faulting with a sinistral shear component at the top of the Eclogite Zone. The different shear sense on both sides of the unit does not affect the omphacite textures in any way. The omphacite lattice preferred orientation patterns of the Western Gneiss Region can not be connected with any exhumation model. The textures were probably generated during the metamorphic peak and reflect the change from subduction to exhumation. Eclogite Zone and Western Gneiss Region differ significantly in size and especially in metamorphic conditions. While the Eclogite Zone is characterized by constant P-T conditions (600-650°C, 20-25 kbar), the Western Gneiss Region contains a wide P-T range from high- to ultrahigh pressure conditions (400-800°C, 20-35 kbar). In contrast to this, the omphacite textures of both units are very similar. This means that omphacite LPO is independent from P-T conditions and therefore from burial depth. Further, in both units, omphacite LPO is independent from grain and subgrain size as well as from any shape preferred orientation (SPO) on grain and subgrain scale. Overall, omphacite lattice preferred orientation are generated on the prograde part of omphacite development. Therefore, textural investigations on omphacite LPO are not applicable to study eclogite exhumation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present thesis I examined individual and sex-specific habitat use and site fidelity in the western barbastelle bat, Barbastella barbastellus, using data from a four-year monitoring in a Special Area of Conservation in Rhineland-Palatinate, Germany. The western barbastelle occurs in central and southern Europe from Portugal to the Caucasus, but is considered to be rare in large parts of its range. Up to now, long-term field studies to assess interannual site fidelity and the possible effects of intra- and interspecific competition have not been studied in this species. Nevertheless, such data provide important details to estimate the specific spatial requirements of its populations, which in turn can be incorporated in extended conservation actions. I used radio-telemetry, home range analyses und automated ultrasound detection to assess the relation between landscape elements and western barbastelle bats and their roosts. In addition, I estimated the degree of interspecific niche overlap with two selected forest-dwelling bat species, Bechstein's bat (Myotis bechsteinii) and the brown long-eared bat (Plecotus auritus). Intra- and interannual home range overlap analyses of female B. barbastellus revealed that fidelity to individual foraging grounds, i.e. a traditional use of particular sites, seems to effect the spatial distribution of home ranges more than intraspecific competition among communally roosting females. The results of a joint analysis of annual maternity roost selection and flight activities along commuting corridors highlight the necessity to protect roost complexes in conjunction with commuting corridors. Using radio-tracking data and an Euclidean distance approach I quantified the sex-specific and individual habitat use by female and male western barbastelle bats within their home ranges. My data indicated a partial sexual segregation in summer habitats. Females were found in deciduous forest patches and preferably foraged along linear elements within the forest. Males foraged closer to forest edges and in open habitats. Finally, I examined the resource partitioning between the western barbastelle bat and two syntopic bat species with a potential for interspecific competition due to similarities in foraging strategies, prey selection and roost preferences. Simultaneous radio-tracking of mixed-species pairs revealed a partial spatial separation of the three syntopic bat species along a gradient from the forest to edge habitats and open landscape. Long-eared bats were found close to open habitats which were avoided by the other two species. B. barbastellus preferred linear landscape elements (edge habitats) and forests, M. bechsteinii also preferred forest habitats. Only little overlap in terms of roost structure and tree species selection was found.