2 resultados para Double Complex

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structure and folding of membrane proteins are important issues in molecular and cell biology. In this work new approaches are developed to characterize the structure of folded, unfolded and partially folded membrane proteins. These approaches combine site-directed spin labeling and pulse EPR techniques. The major plant light harvesting complex LHCIIb was used as a model system. Measurements of longitudinal and transversal relaxation times of electron spins and of hyperfine couplings to neighboring nuclei by electron spin echo envelope modulation(ESEEM) provide complementary information about the local environment of a single spin label. By double electron electron resonance (DEER) distances in the nanometer range between two spin labels can be determined. The results are analyzed in terms of relative water accessibilities of different sites in LHCIIb and its geometry. They reveal conformational changes as a function of micelle composition. This arsenal of methods is used to study protein folding during the LHCIIb self assembly and a spatially and temporally resolved folding model is proposed. The approaches developed here are potentially applicable for studying structure and folding of any protein or other self-assembling structure if site-directed spin labeling is feasible and the time scale of folding is accessible to freeze-quench techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Der Haupt-Lichtsammenkomplex II (LHCII) höherer Pflanzen ist das häufigsternMembranprotein der Welt und in die chloroplastidäre Thylakoidmembran integriert. DerrnLHCII kann als Modellsystem genutzt werden, um die Funktionsweise vonrnMembranproteinen besser zu verstehen, da 96 % seiner Struktur kristallografisch aufgelöstrnist und er in rekombinanter Form in vitro rückgefaltet werden kann. Hierbei entsteht einrnvoll funktionaler Protein-Pigment.Komplex, der nahezu identisch mit der in vivo Varianternist.rnElektronenparamagnetischen Resonanz (EPR) Spektroskopie ist eine hoch sensitive undrnideal geeignete Methode, um die Strukturdynamik von Proteinen zu untersuchen. Hierzurnist eine ortsspezifische Markierung mit Spinsonden notwendig, die kovalent an Cysteinernbinden. Möglich wird dies, indem sorgfältig ausgewählte Aminosäuren gegen Cysteinerngetauscht werden, ohne dass die Funktionsweise des LHCII beeinträchtigt wird.rnIm Rahmen dieser Arbeit wurden die Stabilität des verwendeten Spinmarkers und diernProbenqualität verbessert, indem alle Schritte der Probenpräparation untersucht wurden.rnMithilfe dieser Erkenntnisse konnte sowohl die Gefahr einer Proteinaggregation als auchrnein Verlust des EPR Signals deutlich vermindert werden. In Kombination mit derrngleichzeitigen Etablierung des Q-Band EPR können nun deutlich geringer konzentrierternProben zuverlässig vermessen werden. Darüber hinaus wurde eine reproduzierbarernMethode entwickelt, um heterogene Trimere herzustellen. Diese bestehen aus einemrndoppelt markierten Monomer und zwei unmarkierten Monomeren und erlauben es, diernkristallografisch unvollständig aufgelöste N-terminale Domäne im monomeren undrntrimeren Assemblierungsgrad zu untersuchen. Die Ergebnisse konnten einerseits diernVermutung bestätigen, dass diese Domäne im Vergleich zum starren Proteinkern sehrrnflexibel ist und andererseits, dass sie in Monomeren noch mobiler ist als in Trimeren.rnZudem wurde die lumenale Schleifenregion bei unterschiedlichen pH Werten undrnvariierender Pigmentzusammensetzung untersucht, da dieser Bereich sehr kontroversrndiskutiert wird. Die Messergebnisse offenbarten, dass diese Region starre und flexiblerernSektionen aufweist. Während der pH Wert keinen Einfluss auf die Konformation hatte,rnzeigte sich, dass die Abwesenheit von Neoxanthin zu einer Änderung der Konformationrnführt. Weiterführende Analysen der strukturellen Dynamik des LHCII in einerrnLipidmembran konnten hingegen nicht durchgeführt werden, da dies eine gerichteternInsertion des rückgefalteten Proteins in Liposomen erfordert, was trotz intensiverrnVersuche nicht zum Erfolg führte.