3 resultados para Diesel generator set

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Beziehung zwischen genetischem Polymorphismus von Populationen und Umweltvariabilität: Anwendung der Fitness-Set Theorie Das Quantitative Fitness-Set Modell (QFM) ist eine Erweiterung der Fitness-Set Theorie. Das QFM kann Abstufungen zwischen grob- und feinkörnigen regelmäßigen Schwankungen zweier Umwelten darstellen. Umwelt- und artspezifische Parameter, sowie die bewirkte Körnigkeit, sind quantifizierbar. Experimentelle Daten lassen sich analysieren und das QFM erweist sich in großen Populationen als sehr genau, was durch den diskreten Parameterraum unterstützt wird. Kleine Populationen und/oder hohe genetische Diversität führen zu Schätzungsungenauigkeiten, die auch in natürlichen Populationen zu erwarten sind. Ein populationsgrößenabhängiger Unschärfewert erweitert die Punktschätzung eines Parametersatzes zur Intervallschätzung. Diese Intervalle wirken in finiten Populationen als Fitnessbänder. Daraus ergibt sich die Hypothese, dass bei Arten, die in dichten kontinuierlichen Fitnessbändern leben, Generalisten und in diskreten Fitnessbändern Spezialisten evolvieren.Asynchrone Reproduktionsstrategien führen zur Bewahrung genetischer Diversität. Aus dem Wechsel von grobkörniger zu feinkörniger Umweltvariation ergibt sich eine Bevorzugung der spezialisierten Genotypen. Aus diesem Angriffspunkt für disruptive Selektion lässt sich die Hypothese Artbildung in Übergangsszenarien von grobkörniger zu feinkörniger Umweltvariation formulieren. Im umgekehrten Fall ist Diversitätsverlust und stabilisierende Selektion zu erwarten Dies ist somit eine prozessorientierte Erklärung für den Artenreichtum der (feinkörnigen) Tropen im Vergleich zu den artenärmeren, jahreszeitlichen Schwankungen unterworfenen (grobkörnigen) temperaten Zonen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-invasive molecular-imaging technologies are playing a key role in drug discovery, development and delivery. Positron Emission Tomography (PET) is such a molecular imaging technology and a powerful tool for the observation of various deceases in vivo. However, it is limited by the availability of vectors with high selectivity to the target and radionuclides with a physical half-life which matches the biological half-life of the observed process. The 68Ge/68Ga radionuclide generator makes the PET-nuclide anywhere available without an on-site cyclotron. Besides the perfect availability 68Ga shows well suited nuclide properties for PET, but it has to be co-ordinated by a chelator to introduce it in a radiopharmaceuticals.rnHowever, the physical half-life of 68Ga (67.7 min) might limit the spectrum of clinical applications of 68Ga-labelled radiodiagnostics. Furthermore, 68Ga-labelled analogues of endoradiotherapeuticals of longer biological half-live such as 90Y- or 177Lu-labeled peptides and proteins cannot be used to determine individual radiation dosimetry directly. rnThus, radionuclide generator systems providing positron emitting daughters of extended physical half-life are of renewed interest. In this context, generator-derived positron emitters with longer physical half-life are needed, such as 72As (T½ = 26 h) from the 72Se/72As generator, or 44Sc (T½ = 3.97 h) from the 44Ti/44Sc generator.rnIn this thesis the implementation of radioactive gallium-68 and scandium-44 for molecular imaging and nuclear medical diagnosis, beginning with chemical separation and purification of 44Ti as a radionuclide mother, investigation of pilot generators with different elution mode, building a prototype generator, development and investigation of post-processing of the generator eluate, its concentration and further purification, the labeling chemistry under different conditions, in vitro and in vivo studies of labeled compounds and, finally, in vivo imaging experiments are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis the measurement of the effective weak mixing angle wma in proton-proton collisions is described. The results are extracted from the forward-backward asymmetry (AFB) in electron-positron final states at the ATLAS experiment at the LHC. The AFB is defined upon the distribution of the polar angle between the incoming quark and outgoing lepton. The signal process used in this study is the reaction pp to zgamma + X to ee + X taking a total integrated luminosity of 4.8\,fb^(-1) of data into account. The data was recorded at a proton-proton center-of-mass energy of sqrt(s)=7TeV. The weak mixing angle is a central parameter of the electroweak theory of the Standard Model (SM) and relates the neutral current interactions of electromagnetism and weak force. The higher order corrections on wma are related to other SM parameters like the mass of the Higgs boson.rnrnBecause of the symmetric initial state constellation of colliding protons, there is no favoured forward or backward direction in the experimental setup. The reference axis used in the definition of the polar angle is therefore chosen with respect to the longitudinal boost of the electron-positron final state. This leads to events with low absolute rapidity have a higher chance of being assigned to the opposite direction of the reference axis. This effect called dilution is reduced when events at higher rapidities are used. It can be studied including electrons and positrons in the forward regions of the ATLAS calorimeters. Electrons and positrons are further referred to as electrons. To include the electrons from the forward region, the energy calibration for the forward calorimeters had to be redone. This calibration is performed by inter-calibrating the forward electron energy scale using pairs of a central and a forward electron and the previously derived central electron energy calibration. The uncertainty is shown to be dominated by the systematic variations.rnrnThe extraction of wma is performed using chi^2 tests, comparing the measured distribution of AFB in data to a set of template distributions with varied values of wma. The templates are built in a forward folding technique using modified generator level samples and the official fully simulated signal sample with full detector simulation and particle reconstruction and identification. The analysis is performed in two different channels: pairs of central electrons or one central and one forward electron. The results of the two channels are in good agreement and are the first measurements of wma at the Z resonance using electron final states at proton-proton collisions at sqrt(s)=7TeV. The precision of the measurement is already systematically limited mostly by the uncertainties resulting from the knowledge of the parton distribution functions (PDF) and the systematic uncertainties of the energy calibration.rnrnThe extracted results of wma are combined and yield a value of wma_comb = 0.2288 +- 0.0004 (stat.) +- 0.0009 (syst.) = 0.2288 +- 0.0010 (tot.). The measurements are compared to the results of previous measurements at the Z boson resonance. The deviation with respect to the combined result provided by the LEP and SLC experiments is up to 2.7 standard deviations.