1 resultado para Davidson, Rhoda.
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die FT-Rheologie wird zur Unterscheidung verschiedener Kamm-Topologien in Polystyrollösungen und –schmelzen angewendet. Die Polystyrole werden in Abhängigkeit der Deborahzahl De unter LAOS-Bedingungen vermessen. Die Meßergebnisse zeigen, daß der Schritt von wohldefinierten Systemen (lineare Ketten, Sterne) zu solchen mit statistischer Verteilung wie in Kämmen zu großen Veränderungen sowohl im linearen als auch im nichtlinearen Bereich der rheologischen Messungen führt. Sowohl die Masterkurven als auch die Intenstiäten I3/1 und Phasen Phi3 der Nichtlinearitäten der einzelnen Proben weisen jeweils deutliche Unterschiede untereinander auf. Diese sind durch die bisherigen Ergebnisse noch nicht vollständig mit topologischen Merkmalen in Verbindung zu bringen. Die Messungen wurden mit dem von McLeish eingeführten Pom-pom Modell und daraus weiterentwickelten double convected-Pom-pom Modell (DCPP) simuliert und lieferten gute Übereinstimmung sowie auch Vorhersagen über den experimentell nicht mehr zugänglichen Bereich. Zur Untersuchung des Einflusses von mechanischer Scherung auf die lokale, molekulare Dynamik wird das LAOS-Experiment in situ mit dielektrischer Spektroskopie kombiniert. Dazu wurde eine Apparatur entwickelt, die das hochsensitive ARES-Rheometer mit dem hochauflösenden dielektrischen ALPHA-Analyzer verbindet. Mit dieser Apparatur wurde das Typ-A Polymer 1,4-cis-Polyisopren, mit einem Dipolmoment entlang des Rückgrats, bei oszillatorischer Scherung unter gleichzeitiger Aufnahme eines dielektrischen Spektrums vermessen. Es konnte gezeigt werden, daß die oszillatorische Verscherung weder die charakteristische Relaxationszeit noch die Form des Normal Mode Peaks beeinflußt, wohl aber die dielektrische Stärke Delta epsilon. Diese entspricht der Fläche unter dem e“-Peak und kann mit einer Debye- und einer Cole/Davidson-Funktion angepasst werden. Die Abnahme der dielektrischen Stärke mit zunehmender Scheramplitude kann mit der Orientierungsverteilung der End-zu-End-Vektoren in der Probe erklärt werden.