4 resultados para Data-driven knowledge acquisition
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The production of the Z boson in proton-proton collisions at the LHC serves as a standard candle at the ATLAS experiment during early data-taking. The decay of the Z into an electron-positron pair gives a clean signature in the detector that allows for calibration and performance studies. The cross-section of ~ 1 nb allows first LHC measurements of parton density functions. In this thesis, simulations of 10 TeV collisions at the ATLAS detector are studied. The challenges for an experimental measurement of the cross-section with an integrated luminositiy of 100 pb−1 are discussed. In preparation for the cross-section determination, the single-electron efficiencies are determined via a simulation based method and in a test of a data-driven ansatz. The two methods show a very good agreement and differ by ~ 3% at most. The ingredients of an inclusive and a differential Z production cross-section measurement at ATLAS are discussed and their possible contributions to systematic uncertainties are presented. For a combined sample of signal and background the expected uncertainty on the inclusive cross-section for an integrated luminosity of 100 pb−1 is determined to 1.5% (stat) +/- 4.2% (syst) +/- 10% (lumi). The possibilities for single-differential cross-section measurements in rapidity and transverse momentum of the Z boson, which are important quantities because of the impact on parton density functions and the capability to check for non-pertubative effects in pQCD, are outlined. The issues of an efficiency correction based on electron efficiencies as function of the electron’s transverse momentum and pseudorapidity are studied. A possible alternative is demonstrated by expanding the two-dimensional efficiencies with the additional dimension of the invariant mass of the two leptons of the Z decay.
Resumo:
The Standard Model of particle physics was developed to describe the fundamental particles, which form matter, and their interactions via the strong, electromagnetic and weak force. Although most measurements are described with high accuracy, some observations indicate that the Standard Model is incomplete. Numerous extensions were developed to solve these limitations. Several of these extensions predict heavy resonances, so-called Z' bosons, that can decay into an electron positron pair. The particle accelerator Large Hadron Collider (LHC) at CERN in Switzerland was built to collide protons at unprecedented center-of-mass energies, namely 7 TeV in 2011. With the data set recorded in 2011 by the ATLAS detector, a large multi-purpose detector located at the LHC, the electron positron pair mass spectrum was measured up to high masses in the TeV range. The properties of electrons and the probability that other particles are mis-identified as electrons were studied in detail. Using the obtained information, a sophisticated Standard Model expectation was derived with data-driven methods and Monte Carlo simulations. In the comparison of the measurement with the expectation, no significant deviations from the Standard Model expectations were observed. Therefore exclusion limits for several Standard Model extensions were calculated. For example, Sequential Standard Model (SSM) Z' bosons with masses below 2.10 TeV were excluded with 95% Confidence Level (C.L.).
Resumo:
The Standard Model of particle physics is a very successful theory which describes nearly all known processes of particle physics very precisely. Nevertheless, there are several observations which cannot be explained within the existing theory. In this thesis, two analyses with high energy electrons and positrons using data of the ATLAS detector are presented. One, probing the Standard Model of particle physics and another searching for phenomena beyond the Standard Model.rnThe production of an electron-positron pair via the Drell-Yan process leads to a very clean signature in the detector with low background contributions. This allows for a very precise measurement of the cross-section and can be used as a precision test of perturbative quantum chromodynamics (pQCD) where this process has been calculated at next-to-next-to-leading order (NNLO). The invariant mass spectrum mee is sensitive to parton distribution functions (PFDs), in particular to the poorly known distribution of antiquarks at large momentum fraction (Bjoerken x). The measurementrnof the high-mass Drell-Yan cross-section in proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV is performed on a dataset collected with the ATLAS detector, corresponding to an integrated luminosity of 4.7 fb-1. The differential cross-section of pp -> Z/gamma + X -> e+e- + X is measured as a function of the invariant mass in the range 116 GeV < mee < 1500 GeV. The background is estimated using a data driven method and Monte Carlo simulations. The final cross-section is corrected for detector effects and different levels of final state radiation corrections. A comparison isrnmade to various event generators and to predictions of pQCD calculations at NNLO. A good agreement within the uncertainties between measured cross-sections and Standard Model predictions is observed.rnExamples of observed phenomena which can not be explained by the Standard Model are the amount of dark matter in the universe and neutrino oscillations. To explain these phenomena several extensions of the Standard Model are proposed, some of them leading to new processes with a high multiplicity of electrons and/or positrons in the final state. A model independent search in multi-object final states, with objects defined as electrons and positrons, is performed to search for these phenomenas. Therndataset collected at a center-of-mass energy of sqrt(s) = 8 TeV, corresponding to an integrated luminosity of 20.3 fb-1 is used. The events are separated in different categories using the object multiplicity. The data-driven background method, already used for the cross-section measurement was developed further for up to five objects to get an estimation of the number of events including fake contributions. Within the uncertainties the comparison between data and Standard Model predictions shows no significant deviations.
Resumo:
This thesis concerns artificially intelligent natural language processing systems that are capable of learning the properties of lexical items (properties like verbal valency or inflectional class membership) autonomously while they are fulfilling their tasks for which they have been deployed in the first place. Many of these tasks require a deep analysis of language input, which can be characterized as a mapping of utterances in a given input C to a set S of linguistically motivated structures with the help of linguistic information encoded in a grammar G and a lexicon L: G + L + C → S (1) The idea that underlies intelligent lexical acquisition systems is to modify this schematic formula in such a way that the system is able to exploit the information encoded in S to create a new, improved version of the lexicon: G + L + S → L' (2) Moreover, the thesis claims that a system can only be considered intelligent if it does not just make maximum usage of the learning opportunities in C, but if it is also able to revise falsely acquired lexical knowledge. So, one of the central elements in this work is the formulation of a couple of criteria for intelligent lexical acquisition systems subsumed under one paradigm: the Learn-Alpha design rule. The thesis describes the design and quality of a prototype for such a system, whose acquisition components have been developed from scratch and built on top of one of the state-of-the-art Head-driven Phrase Structure Grammar (HPSG) processing systems. The quality of this prototype is investigated in a series of experiments, in which the system is fed with extracts of a large English corpus. While the idea of using machine-readable language input to automatically acquire lexical knowledge is not new, we are not aware of a system that fulfills Learn-Alpha and is able to deal with large corpora. To instance four major challenges of constructing such a system, it should be mentioned that a) the high number of possible structural descriptions caused by highly underspeci ed lexical entries demands for a parser with a very effective ambiguity management system, b) the automatic construction of concise lexical entries out of a bulk of observed lexical facts requires a special technique of data alignment, c) the reliability of these entries depends on the system's decision on whether it has seen 'enough' input and d) general properties of language might render some lexical features indeterminable if the system tries to acquire them with a too high precision. The cornerstone of this dissertation is the motivation and development of a general theory of automatic lexical acquisition that is applicable to every language and independent of any particular theory of grammar or lexicon. This work is divided into five chapters. The introductory chapter first contrasts three different and mutually incompatible approaches to (artificial) lexical acquisition: cue-based queries, head-lexicalized probabilistic context free grammars and learning by unification. Then the postulation of the Learn-Alpha design rule is presented. The second chapter outlines the theory that underlies Learn-Alpha and exposes all the related notions and concepts required for a proper understanding of artificial lexical acquisition. Chapter 3 develops the prototyped acquisition method, called ANALYZE-LEARN-REDUCE, a framework which implements Learn-Alpha. The fourth chapter presents the design and results of a bootstrapping experiment conducted on this prototype: lexeme detection, learning of verbal valency, categorization into nominal count/mass classes, selection of prepositions and sentential complements, among others. The thesis concludes with a review of the conclusions and motivation for further improvements as well as proposals for future research on the automatic induction of lexical features.