2 resultados para DEPENDENT ACCUMULATION
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Zusammenfassung Diese Arbeit beschreibt Untersuchungen über die zellulären Mechanismen, die zur Bildung dieser DNA-Schäden führen, sowie über die biologischen Auswirkungen dieser Schäden. Die Untersuchungen zu Uracil in der DNA wurden in ung-knockout-MEFs und Mäusen durchgeführt, die es erlauben, die Konsequenzen eines Ausfalls der wichtigsten Reparaturglykosylase für Uracil zu beleuchten. Die Ergebnisse zeigen eine deutliche Akkumulation von Uracil in den ung-/--Mausfibroblasten im Vergleich zum Wildtyp. In frisch isolierten Leber- und Milzzellen der Mäuse konnte dieser genotypspezifische Unterschied, wenn auch weniger ausgeprägt, ebenso beobachtet werden, nicht jedoch in reifen Spermien. Dieser gewebespezifische Unterschied und die quantitativ stärker ausgeprägte Akkumulation in ung-/--Mausfibroblasten im Vergleich zu den Mäusegeweben gab Anlass zur Vermutung, dass die Proliferation der Zellen für den Haupteintrag an Uracil in die DNA verantwortlich ist. Erstmals konnte in Versuche mit konfluenten (nicht mehr proliferierenden) ung-/--Mausfibroblasten gezeigt werden, dass nicht die spontane hydrolytische Desaminierung von Cytosin, sondern der Fehleinbau von dUMP während der DNA-Replikation die Hauptquelle für Uracil in der DNA von Säugerzellen darstellt. Da der Uracilmetabolismus ein wichtiges Target in der Chemotherapie ist, lag es nahe, das zur Verfügung stehende ung-knockout-Modell der MEFs zur Untersuchung mit Fluorpyrimidinen, die als Zytostatika verwendet werden, einzusetzen. Da bisher die Ursachen der beobachteten Apoptose der Tumorzellen und aller anderen metabolisch hochaktiven Zellen eines behandelten Organismus noch nicht vollständig verstanden ist, wurden diese Zellen mit verschiedenen Fluorpyrimidinen behandelt, die als Thymidylatsynthasehemmer die de novo Synthese von Thymidin unterbinden. Es konnte gezeigt werden, dass ung-/- Mausfibroblasten, im Gegensatz zu ung+/+ Mausfibroblasten, verstärkt Uracil in der DNA akkumulieren. Obwohl die ung+/+ Mausfibroblasten keine erhöhten Uracil-Spiegel in der DNA aufwiesen, zeigten sie bei Inkubation mit einem der beiden Thymidylatsynthasehemmern, 5-Fluoruracil (5-FU), die gleiche Sensitivität in einem nachfolgenden Proliferationsversuch wie die ung-/- Mausfibroblasten. Dies lässt darauf schließen, dass weder Reparatur noch Einbau von Uracil in die DNA für die beobachtete Toxizität dieser Zytostatika notwendig sind. Ein weiterer Schwerpunkt dieser Arbeit war die Untersuchung des DNA-schädigenden Potenzials endogener ROS, die aus dem Fremdstoffmetabolismus stammen. Dazu wurden V79-Zellen verwendet, die mit dem humanen Enzym Cytochrom 2E1 (CYP2E1) transfiziert wurden (V79 CYP2E1) sowie Zellen, die ebenfalls durch Transfektion das humane Enzym Cytochromreduktase (auch Oxidoreduktase genannt) überexprimieren (V79 hOR). Beide Enzyme sind zusammen an der Hydroxylierung von Fremdstoffen beteiligt, bei der die Reduktion von molekularem Sauerstoff durch Übertragung von zwei Elektronen notwendig ist. Wird anstatt zweier Elektronen in Folge nur eines auf den Sauerstoff übertragen, so führt dieser von der Substratoxygenierung enkoppelte Vorgang zur Bildung von Superoxid. Daher galt es zu klären, ob das so erzeugte Superoxid und daraus gebildete ROS in der Lage sind, die DNA zu schädigen. Es konnte gezeigt werden, dass die Überexpression von CYP2E1 nicht zu einem erhöhten basalen Gleichgewichtsspiegel oxidativer DNA-Schäden führt und die Metabolisierung von Ethanol durch dieses Enzym ebenfalls keine DNA-Modifikationen verursacht. Die Überexpression der Cytochromreduktase hingegen führte gegenüber dem Wildtyp zu einem erhöhten basalen Gleichgewichtsspiegel oxidativer Basenmodifikationen nach Depletion von Glutathion, einem wichtigen zellulären Antioxidans. Im Mikrokerntest, der gentoxische Ereignisse wie Chromosomenbrüche in Zellen aufzeigt, zeigte sich schon ohne Glutathion-Depletion eine doppelt so hohe Mikrokernrate im Vergleich zum Wildtyp. In weiteren Versuchen wurden die V79-hOR-Zellen mit dem chinoiden Redoxcycler Durochinon inkubiert, um zu untersuchen, ob das vermutlich durch die Reduktase vermittelte Redoxcycling über Generierung von ROS in der Lage ist, einen oxidativen DNA-Schaden und Toxizität zu verursachen. Hier zeigte sich, dass die Überexpression der Reduktase Voraussetzung für Toxizität und den beobachteten DNA-Schaden ist. Die Wildtyp-Zellen zeigten weder einen DNA-Schaden noch Zytotoxizität, auch eine zusätzliche Glutathion-Depletion änderte nichts an dem Befund. Die V79-hOR-Zellen hingegen reagierten auf die Inkubation mit Durochinon mit einer konzentrationsabhängigen Zunahme der Einzelstrangbrüche und oxidativen Basenmodifikationen, wobei sich der DNA-Schaden durch vorherige Glutathion-Depletion verdoppeln ließ.
Resumo:
Autophagie ist ein konservierter, kataboler Mechanismus in allen eukaryoten Zellen. Unter anderem wird ihm eine wichtige Rolle als zellautonomer Abwehrmechanismus gegen Mikroorganismen zugeschrieben; von manchen Infektionserregern wird er jedoch unterlaufen oder sogar genutzt. Der stärkste Auslöser der Autophagie ist ein Mangel an Nährstoffen, insbesondere Aminosäuren. Über die Deaktivierung der Kinase mTORC1 und die Phosphorylierung des eukaryoten Translationsinitiationsfaktors eIF2α hemmt die Nährstoffknappheit die Proteinbiosynthese und aktiviert gleichzeitig Autophagie. Wie Mikroorganismen, insbesondere Bakterien, Autophagie auslösen oder manipulieren, ist derzeit Gegenstand intensiver Forschung. Modifikationen an Mikroben oder Phagosomen und Adapterproteine, die diese Veränderungen und Komponenten des Autophagieapparates erkennen, scheinen jedenfalls bei der selektiven Erkennung durch die Autophagie-Maschinerie wichtig zu sein. rnIn der vorliegenden Dissertationsarbeit wird die Rolle des membranporenbildenden α-Toxins von Staphylococcus aureus für die Induktion von Autophagie beleuchtet. Zum einen erwies sich die Akkumulation von (EGFP)-LC3(II), einem Marker der Autophagosomen, um intrazelluläre S. aureus als abhängig von α-Toxin. Zweitens, genügt extrazellulär appliziertes α-Toxin um (EGFP)-LC3(II)-positive Endosomen zu induzieren. Während der Angriff aus dem extrazellulären Raum jedoch binnen kurzer Zeit eine fokale Kumulation von phosphoryliertem eIF2α an der Plasmamembran induziert, die an der Internalisierung des Toxins beteiligt ist, findet sich am phagosomalen Kompartiment keine Toxin-abhängige Anhäufung von p-eIF2α oder proximalen Autophagieregulatoren. Dies impliziert, dass Toxin-Angriff auf die Plasmamembran, nicht aber auf das Phagosom, zu einer Reaktion führt, wie sie bei massivem Nährstoffmangel zu beobachten ist. Obwohl keine α-Toxin-abhängige Kumulation von p-eIF2α bei einem Angriff aus dem Phagosom erfolgt, findet sich um α-Toxin-produzierende Bakterien eine massive Kumulation von LC3 und Adapterprotein p62/Sequestosome1. Dies deutet daraufhin, dass der Ort des Angriffs - Plasmamembran oder Phagosom – für den Autophagie-induzierenden Mechanismus wichtig sein könnte. Der unterschiedliche Effekt auf die zellulären Ionenkonzentrationen, den ein Angriff auf die Plasmamembran oder auf ein Phagosom auslösen würde, bietet hierfür eine mögliche Erklärung. Die Aktivierung der Autophagie über Adapterproteine könnte dann als back-up Mechanismus fungieren, der auch dann greift, wenn eine Invasion ohne Schädigung der Plasmamembran erfolgt. Ein cross-talk der beiden Induktionswege ist angesichts der Bedeutung von p62 für die selektive und die Hunger-assoziierte Autophagie gut möglich; sezerniertes Toxin könnte durch die Aktivierung der basalen Autophagie Adapter-basierte Mechanismen verstärken.