2 resultados para Curve numbers
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die Röntgenabsorptionsspektroskopie (Extended X-ray absorption fine structure (EXAFS) spectroscopy) ist eine wichtige Methode zur Speziation von Schwermetallen in einem weiten Bereich von umweltrelevanten Systemen. Um Strukturparameter wie Koordinationszahl, Atomabstand und Debye-Waller Faktoren für die nächsten Nachbarn eines absorbierenden Atoms zu bestimmen, ist es für experimentelle EXAFS-Spektren üblich, unter Verwendung von Modellstrukturen einen „Least-Squares-Fit“ durchzuführen. Oft können verschiedene Modellstrukturen mit völlig unterschiedlicher chemischer Bedeutung die experimentellen EXAFS-Daten gleich gut beschreiben. Als gute Alternative zum konventionellen Kurven-Fit bietet sich das modifizierte Tikhonov-Regularisationsverfahren an. Ergänzend zur Tikhonov-Standardvariationsmethode enthält der in dieser Arbeit vorgestellte Algorithmus zwei weitere Schritte, nämlich die Anwendung des „Method of Separating Functionals“ und ein Iterationsverfahren mit Filtration im realen Raum. Um das modifizierte Tikhonov-Regularisationsverfahren zu testen und zu bestätigen wurden sowohl simulierte als auch experimentell gemessene EXAFS-Spektren einer kristallinen U(VI)-Verbindung mit bekannter Struktur, nämlich Soddyit (UO2)2SiO4 x 2H2O, untersucht. Die Leistungsfähigkeit dieser neuen Methode zur Auswertung von EXAFS-Spektren wird durch ihre Anwendung auf die Analyse von Proben mit unbekannter Struktur gezeigt, wie sie bei der Sorption von U(VI) bzw. von Pu(III)/Pu(IV) an Kaolinit auftreten. Ziel der Dissertation war es, die immer noch nicht voll ausgeschöpften Möglichkeiten des modifizierten Tikhonov-Regularisationsverfahrens für die Auswertung von EXAFS-Spektren aufzuzeigen. Die Ergebnisse lassen sich in zwei Kategorien einteilen. Die erste beinhaltet die Entwicklung des Tikhonov-Regularisationsverfahrens für die Analyse von EXAFS-Spektren von Mehrkomponentensystemen, insbesondere die Wahl bestimmter Regularisationsparameter und den Einfluss von Mehrfachstreuung, experimentell bedingtem Rauschen, etc. auf die Strukturparameter. Der zweite Teil beinhaltet die Speziation von sorbiertem U(VI) und Pu(III)/Pu(IV) an Kaolinit, basierend auf experimentellen EXAFS-Spektren, die mit Hilfe des modifizierten Tikhonov-Regularisationsverfahren ausgewertet und mit Hilfe konventioneller EXAFS-Analyse durch „Least-Squares-Fit“ bestätigt wurden.
Resumo:
Ist $f: X \to S$ eine glatte Familie von Calabi-Yau-Mannigfaltigkeiten der Dimension $m$ über einer quasiprojektiven Kurve, so trägt nach einem Resultat von Zucker die erste $L^2$-Kohomologiegruppe $H^1_{(2)}(S, R^m f_* \mathbb{C}_X)$ eine reine Hodgestruktur vom Gewicht $m+1$. In dieser Arbeit berechnen wir die Hodgezahlen solcher Hodgestrukturen für $m= 1, 2, 3$ und verallgemeinern dabei Formeln aus einem Artikel von del Angel, Müller-Stach, van Straten und Zuo auf den Fall, in dem die lokalen Monodromiematrizen bei Unendlich nicht unipotent, sondern echt quasi-unipotent sind. Wir verwenden dazu den $L^2$-Higgs-Komplex nach Jost, Yang und Zuo. Für Familien von Kurven führt dies auf eine bereits bekannte Formel von Cox und Zucker. Schließlich wenden wir die Ergebnisse im Fall $m=3$ auf 14 Familien von Calabi-Yau-Mannigfaltigkeiten an, die eine Rolle in der Spiegelsymmetrie spielen, sowie auf eine von Rohde konstruierte Familie ohne Punkte mit maximal unipotenter Monodromie.