1 resultado para Cooper pairing

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The heavy fermion compound UNi2Al3 exhibits the coexistence of superconductivity and magnetic order at low temperatures, stimulating speculations about possible exotic Cooper-pairing interaction in this superconductor. However, the preparation of good quality bulk single crystals of UNi2Al3 has proven to be a non-trivial task due to metallurgical problems, which result in the formation of an UAl2 impurity phase and hence a strongly reduced sample purity. The present work concentrates on the preparation, characterization and electronic properties investigation of UNi2Al3 single crystalline thin film samples. The preparation of thin films was accomplished in a molecular beam epitaxy (MBE) system. (100)-oriented epitaxial thin films of UNi2Al3 were grown on single crystalline YAlO3 substrates cut in (010)- or (112)-direction. The high crystallographic quality of the samples was proved by several characterisation methods, such as X-ray analysis, RHEED and TEM. To study the magnetic structure of epitaxial thin films resonant magnetic x-ray scattering was employed. The magnetic order of thin the film samples, the formation of magnetic domains with different moment directions, and the magnetic correlation length were discussed. The electronic properties of the UNi2Al3 thin films in the normal and superconducting states were investigated by means of transport measurements. A pronounced anisotropy of the temperature dependent resistivity ρ(T) was observed. Moreover, it was found that the temperature of the resistive superconducting transition depends on the current direction, providing evidence for multiband superconductivity in UNi2Al3. The initial slope of the upper critical field H′c2(T) of the thin film samples suggests an unconventional spin-singlet superconducting state, as opposed to bulk single crystal data. To probe the superconducting gap of UNi2Al3 directly by means of tunnelling spectroscopy many planar junctions of different design employing different techniques were prepared. Despite the tunneling regime of the junctions, no features of the superconducting density of state of UNi2Al3 were ever observed. It is assumed that the absence of UNi2Al3 gap features in the tunneling spectra was caused by imperfections of the tunnelling contacts. The superconductivity of UNi2Al3 was probably suppressed just in a degraded surface layer, resulting in tunneling into non superconducting UNi2Al3. However, alternative explanations such as intrinsic pair breaking effects at the interface to the barrier are also possible.