2 resultados para Consumption Rate
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Im Rahmen meiner Dissertation untersuchte ich die intrazelluläre Lokalisation des Hämoglobin von Drosophila melanogaster, sowie von Neuroglobin und Cytoglobin der Vertebraten. Obwohl alle drei Globine erst kürzlich entdeckt wurden, liegen bereits Daten über ihre Struktur, ihre biochemischen Eigenschaften und die Lokalisation der mRNA vor. Ihre Funktionen konnten bisher jedoch nicht eindeutig geklärt werden. Das Globin von Drosophila melanogaster konnte mittels Westernblot sowohl in Larven als auch adulten Fliegen nachgewiesen werden. Ebenso war es mir möglich, mittels Immunperoxidaseuntersuchungen die Tracheen, die Terminalzellen der Tracheolen sowie die Fettkörperzellen als Ort der Globinexpression in Drosophila zu identifizieren. Diese Daten deuten darauf hin, dass dieses Globin eine Funktion als Sauerstoffpuffer, der sowohl Sauerstoff speichert als auch transportiert, hin. Damit würde das Drosophila Globin eine zu anderen Insektenglobinen vergleichbare Funktion übernehmen. Zum ersten Mal konnte gezeigt werden, dass Neuroglobin auch in der neuronalen Netzhaut von Säugern und Fischen vorkommt. Des Weiteren konnte Neuroglobin in der Retina zellulär sowie subzellulär lokalisiert werden. In der avaskulären Mäuseretina wurde Neuroglobin neben den Innensegmenten der Photorezeptorzellen, auch noch in den beiden plexiformen Schichten sowie in der Ganglienzellschicht gefunden. Die gezeigte Kolokalisation dieses intrazellulären Globins mit Mitochondrien und somit auch mit den Orten des höchsten Sauerstoffbedarfs in der Retina deutet auf eine Funktion im Sauerstofftransport zu den Mitochondrien hin. Des Weiteren könnte Neuroglobin auch als Sauerstoffspeicher dienen, der es Neuronen ermöglicht, kurzfristige hypoxische Bedingungen unbeschadet zu überstehen. Andere mögliche Funktionen wie z.B. die als Detoxifizierer von reaktiven Sauerstoff- bzw. Sickstoffverbindungen, als Sauerstoffsensor, sowie als terminale Oxidase erscheinen durch die gezeigten Daten eher unwahrscheinlich. Die bisherige Annahme, dass Cytoglobin ein ubiquitär exprimiertes Protein ist, konnte von mir nicht bestätigt werden. Für nichtneuronale Gewebe konnte gezeigt werden, dass Cytoglobin lediglich auf das Cytoplasma von Fibroblasten und ontogenetisch verwandte Zelltypen wie Osteoblasten, Chondroblasten und Sternzellen beschränkt ist. Möglicherweise hat Cytoglobin dort eine Funktion in der Kollagensynthese. Ferner wird Cygb cytoplasmatisch und nukleär in einigen Neuronen der Retina und des Gehirns exprimiert. Dort könnte Cygb z.B. nukleäre Enzyme wie die NO-Synthase mit Sauerstoff versorgen. Andere Funktionen scheinen aufgrund meiner Daten im Moment unwahrscheinlich.
Resumo:
Future experiments in nuclear and particle physics are moving towards the high luminosity regime in order to access rare processes. In this framework, particle detectors require high rate capability together with excellent timing resolution for precise event reconstruction. In order to achieve this, the development of dedicated FrontEnd Electronics (FEE) for detectors has become increasingly challenging and expensive. Thus, a current trend in R&D is towards flexible FEE that can be easily adapted to a great variety of detectors, without impairing the required high performance. This thesis reports on a novel FEE for two different detector types: imaging Cherenkov counters and plastic scintillator arrays. The former requires high sensitivity and precision for detection of single photon signals, while the latter is characterized by slower and larger signals typical of scintillation processes. The FEE design was developed using high-bandwidth preamplifiers and fast discriminators which provide Time-over-Threshold (ToT). The use of discriminators allowed for low power consumption, minimal dead-times and self-triggering capabilities, all fundamental aspects for high rate applications. The output signals of the FEE are readout by a high precision TDC system based on FPGA. The performed full characterization of the analogue signals under realistic conditions proved that the ToT information can be used in a novel way for charge measurements or walk corrections, thus improving the obtainable timing resolution. Detailed laboratory investigations proved the feasibility of the ToT method. The full readout chain was investigated in test experiments at the Mainz Microtron: high counting rates per channel of several MHz were achieved, and a timing resolution of better than 100 ps after walk correction based on ToT was obtained. Ongoing applications to fast Time-of-Flight counters and future developments of FEE have been also recently investigated.