9 resultados para Conjugated materials
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die vorliegende Arbeit behandelt die Polymerisation in nicht-wässrigen Emulsionen – bestehend aus einem perfluorierten Solvens und einem Kohlenwasserstoff - unter Einsatz verschiedener Monomere, Katalysatoren und Polymeristionsmethoden zur Generierung von Polymerpartikeln verschiedenster Art. Es wurde gezeigt, dass in diesen inerten Medien zahlreiche Methoden zur Polymererzeugung unter gleichzeitiger Morphologiekontrolle eingesetzt werden können, die in konventionellen wässrigen, heterophasischen Systemen versagen.rnrnAusgangspunkt war die literaturbekannte Metallocen-katalysierte Synthese von Polyethylen (PE)- und Polypropylen (PP)-Nanopartikeln in perfluorierter Emulsion in Gegenwart hochmolekularer Blockcopolymere als Stabilisierungsagens. Mithilfe kinetischer Untersuchungen hinsichtlich der PE-Synthese wurde im Rahmen dieser Arbeit ein Modell entwickelt, welches den Diffusionsweg eines gasförmigen Monomers über die verschiedenen Phasengrenzen hinweg zum aktiven katalytischen Zentrum in der dispergierten Phase beschreibt. Ferner konnte die Diffusions- und Reaktionsbestimmtheit der Reaktion in Abhängigkeit verschiedener Reaktionsparameter nachgewiesen sowie ein tieferer Einblick über den Ort der Polymerisation in den heterophasischen Systemen erhalten werden.rnrnDie so gewonnenen Erkenntnisse wurden für die erfolgreiche Synthese von Poly(ethylen-1-hexen)-Copolymeren in perfluorierter Emulsion genutzt, wobei der Comonomergehalt im resultierenden Polymer über einen breiten Bereich variiert werden konnte. Neben der Homo- und Copolymerisation von Polyolefinen wurde in der vorliegenden Arbeit weiter gezeigt, dass die heterogenen Fluide zum Aufbau komplexerer Morphologien wie Kern-Schale-Nanopartikeln genutzt werden können; so gelangte man zu Partikeln mit Kernen aus isotaktischem PP, ummantelt von „weichem“ Poly(n-butylacrylat).rnrnEin weiterer Fokus dieser Arbeit lag auf der Erweiterung der Anwendungsmöglichkeiten der perfluorierten Emulsionen, und so wurde bspw. der Zugang zu Polymerdispersionen aus konjugierten Materialien mit Partikeldurchmessern von 70-100 nm mittels Cyclopolymerisation eröffnet. Ferner konnten als bioverträgliche und biologisch abbaubare Materialien Partikel aus epsilon-Caprolacton in koordinativ-anionischer Polymerisation gewonnen werden. Im Zuge dessen wurden Emulgatoren entwickelt, die den Einsatz polarer Monomere in perfluorierter Emulsion erlauben.rnrnSchlussendlich konnten mittels trifunktioneller Polymere mit lipophilen und fluorophilen Gruppen sowie Lewis-basischen Ankergruppen Ag- und Cu-Partikel dergestalt oberflächenmodifiziert werden, dass ein homogenes Einbetten in eine perfluorierte Matrix möglich war, was antibakterielle perfluorierte Werkstoffe - erwiesen an E. coli - lieferte.
Resumo:
The main goals of this thesis were the design, synthesis, and characterization of novel organic semiconductors, together with their applications in electronics, such as OFETs, OPVs, and OLEDs. The results can be summarized as follows:rn1. In chapter II, two novel angular n-type molecules were presented. Their different alkyl chains play a pivotal role in the molecular orientation relative to surface. One molecule with longer branched chains is tilted with respect to the substrate, thereby resulting in poor device performance, while the other adopt an edge-on orientation with an OFET electron mobility of 0.01 cm2 V-1 s-1.rn2. In chapter III, fused bis-benzothiadiazoles with different molecular geometries, namely linear benzoquinone-fused bis(benzothiadiazole) and V-shaped sulfone-fused bis(benzothiadiazole), were shown. This work not only contributes to the diversity of electron acceptors based on bis-benzothiadiazole moieties, but also highlights the important role of molecular shape for the solid-state packing of organic conjugated materials. In chapter IV, we demonstrated the synthesis of layered acceptors via dimerization of thiadiazole end-capped acenes. Interestingly, they feature huge differences in their photophysical properties. One compound showed a new strong emission in the near-infrared region introduced by the aggregation effect. The planosymmetric compound featured intramolecular excimer (IEE) fluorescence in solution. rn3. In chapter V and VI, we have demonstrated the synthesis of novel spiro-bifluorene based asymmetric and symmetric cruciform electron acceptors with dicyanovinylene substitutions. The solar cells based on PTB7:asymmetric acceptor yields the highest PCE of 0.80%. Such results demonstrate for the first time that dicyanovinylene substituted acceptor could be an alternative to fullerene-based acceptors. rn4. In chapter VII, two novel blue-emitting compounds were shown, which consist of dihydroindenofluorenyl units and ladder-type poly-p-phenylene groups, respectively. The two novel cruciform rigid compounds present not only excellent thermal and electrochemical stability but also high PLQYs. Through analysis of their triplet energy levels, both molecules can be served as hosts for other normal fluorescent or phosphorescent materials.rn
Resumo:
Since conjugated polymers, i.e. polymers with spatially extended pi-bonding system have offered unique physical properties, unobtainable for conventional polymers, significant research efforts directed to better understanding of their chemistry, physics and engineering have been undertaken in the past two and half decades. In this thesis we discuss the synthesis, characterisation and investigation of conjugated semiconducting organic materials for electronic applications. Owing to the versatile properties of metal-organic hybrid materials, there is significant promise that these materials can find use in optical or electronic devices in the future. In addressing this issue, the synthesis of bisthiazol-2-yl-amine (BTA) based polymers is attempted and their metallation is investigated. The focus of this work has been to examine whether the introduction of coordinating metal ions onto the polymer backbone can enhance the conductivity of the material. These studies can provide a basis for understanding the photophysical properties of metal-organic polymers based on BTA. In their neutral (undoped) form conjugated polymers are semiconductors and can be used as active components of plastics electronics such as polymer light-emitting diodes, polymer lasers, photovoltaic cells, field-effect transistors, etc. Toward this goal, it is an objective of the study to synthesize and characterize new classes of luminescent polymeric materials based on anthracene and phenanthrene moieties. A series of materials based on polyphenylenes and poly(phenyleneethynylene)s with 9,10-anthrylene subunits are not only presented but the synthesis and characterization of step-ladder and ladder poly(p-phenylene-alt-anthrylene)s containing 9,10-anthrylene building groups within the main chain are also explored. In a separate work, a series of soluble poly-2,7- and 3,6-phenanthrylenes are synthesized. This can enable us to do a systematic investigation into the optical and electronic properties of PPP-like versus PPV-like. Besides, the self-organization of 3,6-linked macrocyclic triphenanthrylene has been investigated by 2D wide-angle X-ray scattering experiments performed on extruded filaments in solution and in the bulk. Additionally, from the concept that donor-acceptor materials can induce efficient electron transfer, the covalent incorporation of perylene tetracarboxydiimide (PDI) into one block of a poly(2,7-carbazole) (PCz)-based diblock copolymer and 2,5-pyrrole based on push-pull type material are achieved respectively.
Resumo:
Currently pi-conjugated polymers are considered as technologically interesting materials to be used as functional building elements for the development of the new generation of optoelectronic devices. More specifically during the last few years, poly-p-phenylene materials have attracted considerable attention for their blue photoluminescence properties. This Thesis deals with the optical properties of the most representative blue light poly-p-phenylene emitters such as poly(fluorene), oligo(fluorene), poly(indenofluorene) and ladder-type penta(phenylene) derivatives. In the present work, laser induced photoluminescence spectroscopy is used as a major tool for the study of the interdependence between the dynamics of the probed photoluminescence, the molecular structures of the prepared polymeric films and the presence of chemical defects. Complementary results obtained by two-dimensional wide-angle X-ray diffraction are reported. These findings show that the different optical properties observed are influenced by the intermolecular solid-state interactions that in turn are controlled by the pendant groups of the polymer backbone. A significant feedback is delivered regarding the positive impact of a new synthetic route for the preparation of a poly(indenofluorene) derivative on the spectral purity of the compound. The energy transfer mechanisms that operate in the studied systems are addressed by doping experiments. After the evaluation of the structure/property interdependence, a new optical excitation pathway is presented. An efficient photon low-energy up-conversion that sensitises the blue emission of poly(fluorene) is demonstrated. The observed phenomenon takes place in poly(fluorene) derivatives hosts doped with metallated octaethyl porphyrins, after quasi-CW photoexcitation of intensities in the order of kW/cm2. The up-conversion process is parameterised in terms of temperature, wavelength excitation and central metal cation in the porphyrin ring. Additionally the observation of the up-conversion is extended in a broad range of poly-p-phenylene blue light emitting hosts. The dependence of the detected up-conversion intensity on the excitation intensity and doping concentration is reported. Furthermore the dynamics of the up-conversion intensity are monitored as a function of the doping concentration. These experimental results strongly suggest the existence of triplet-triplet annihilation events into the porphyrin molecules that are subsequently followed by energy transfer to the host. After confirming the occurrence of the up-conversion in solutions, cyclic voltammetry is used in order to show that the up-conversion efficiency is partially determined from the energetic alignment between the HOMO levels of the host and the dopant.
Resumo:
A series of oligo-phenylene dendronised conjugated polymers was prepared. The divergent synthetic approach adopted allowed for the facile synthesis of a range of dendronised monomers from a common intermediate, e.g. first and second generation fluorene. Only the polymerisation of the first generation and alkylarylamine substituted dendronised fluorene monomers yielded high molecular weight materials, attributed to the low solubility of the remaining dendronised monomers. The alkylarylamine substituted dendronised poly(fluorene) was incorporated into an organic light emitting diode (OLED) and exhibited an increased colour stability in air compared to other poly(fluorenes). The concept of dendronisation was extended to poly(fluorenone), a previously insoluble material. The synthesis of the first soluble poly(fluorenone) was achieved by the incorporation of oligo-phenylene dendrons at the 4-position of fluorenone. The dendronisation of fluorenone allowed for a polymer with an Mn of 4.1 x 104 gmol-1 to be prepared. Cyclic voltammetry of the dendronised poly(fluorenone) showed that the electron affinity of the polymer was high and that the polymer is a promising n-type material. A dimer and trimer of indenofluorene (IF) were prepared from the monobromo IF. These oligomers were investigated by 2-dimensional wide angle x-ray spectroscopy (2D-WAXS), polarised optical microscopy (POM) and dielectric spectroscopy, and found to form highly ordered smetic phases. By attaching perylene dye as the end-capper on the IF oligomers, molecules that exhibited efficient Förster energy transfer were obtained. Indenofluorene monoketone, a potential defect structure for IF based OLED’s, was synthesised. The synthesis of this model defect structure allowed for the long wavelength emission in OLED’s to be identified as ketone defects. The long wavelength emission from the indenofluorene monoketone was found to be concentration dependent, and suggests that aggregate formation is occurring. An IF linked hexa-peri-hexabenzocoronene (HBC) dimer was synthesised. The 2D-WAXS images of this HBC dimer demonstrate that the molecule exhibits intercolumnar organisation perpendicular to the extrusion direction. POM images of mixtures of the HBC dimer mixed with an HBC with a low isotropic temperature demonstrated that the HBC dimer is mixing with the isotropic HBC.
Resumo:
Conjugated polymers have attracted tremendous academical and industrial research interest over the past decades due to the appealing advantages that organic / polymeric materials offer for electronic applications and devices such as organic light emitting diodes (OLED), organic field effect transistors (OFET), organic solar cells (OSC), photodiodes and plastic lasers. The optimization of organic materials for applications in optoelectronic devices requires detailed knowledge of their photophysical properties, for instance energy levels of excited singlet and triplet states, excited state decay mechanisms and charge carrier mobilities. In the present work a variety of different conjugated (co)polymers, mainly polyspirobifluorene- and polyfluorene-type materials, was investigated using time-resolved photoluminescence spectroscopy in the picosecond to second time domain to study their elementary photophysical properties and to get a deeper insight into structure-property relationships. The experiments cover fluorescence spectroscopy using Streak Camera techniques as well as time-delayed gated detection techniques for the investigation of delayed fluorescence and phosphorescence. All measurements were performed on the solid state, i.e. thin polymer films and on diluted solutions. Starting from the elementary photophysical properties of conjugated polymers the experiments were extended to studies of singlet and triplet energy transfer processes in polymer blends, polymer-triplet emitter blends and copolymers. The phenomenon of photonenergy upconversion was investigated in blue light-emitting polymer matrices doped with metallated porphyrin derivatives supposing an bimolecular annihilation upconversion mechanism which could be experimentally verified on a series of copolymers. This mechanism allows for more efficient photonenergy upconversion than previously reported for polyfluorene derivatives. In addition to the above described spectroscopical experiments, amplified spontaneous emission (ASE) in thin film polymer waveguides was studied employing a fully-arylated poly(indenofluorene) as the gain medium. It was found that the material exhibits a very low threshold value for amplification of blue light combined with an excellent oxidative stability, which makes it interesting as active material for organic solid state lasers. Apart from spectroscopical experiments, transient photocurrent measurements on conjugated polymers were performed as well to elucidate the charge carrier mobility in the solid state, which is an important material parameter for device applications. A modified time-of-flight (TOF) technique using a charge carrier generation layer allowed to study hole transport in a series of spirobifluorene copolymers to unravel the structure-mobility relationship by comparison with the homopolymer. Not only the charge carrier mobility could be determined for the series of polymers but also field- and temperature-dependent measurements analyzed in the framework of the Gaussian disorder model showed that results coincide very well with the predictions of the model. Thus, the validity of the disorder concept for charge carrier transport in amorphous glassy materials could be verified for the investigated series of copolymers.
Resumo:
Conjugated polymers are macromolecules that possess alternating single and double bonds along the main chain. These polymers combine the optoelectronic properties of semiconductors with the mechanical properties and processing advantages of plastics. In this thesis we discuss the synthesis, characterization and application of polyphenylene-based materials in various electronic devices. Poly(2,7-carbazole)s have the potential to be useful as blue emitters, but also as donor materials in solar cells due to their better hole-accepting properties. However, it is associated with two major drawbacks (1) the emission maximum occurs at 421 nm where the human eye is not very sensitive and (2) the 3- and 6- positions of carbazole are susceptible to chemical or electrochemical degradation. To overcome these problems, the ladder-type nitrogen-bridged polymers are synthesized. The resulting series of polymers, nitrogen-bridged poly(ladder-type tetraphenylene), nitrogen-bridged poly(ladder-type pentaphenylene), nitrogen-bridged poly(ladder-type hexaphenylene) and its derivatives are discussed in the light of photophysical and electrochemical properties and tested in PLEDs, solar cell, and OFETs. A promising trend which has emerged in recent years is the use of well defined oligomers as model compounds for their corresponding polymers. However, the uses of these molecules are many times limited by their solubility and one has to use vapor deposition techniques which require high vacuum and temperature and cannot be used for large area applications. One solution to this problem is the synthesis of small molecules having enough alkyl chain on the backbone so that they can be solution or melt processed and has the ability to form thin films like polymers as well as retain the high ordered structure characteristics of small molecules. Therefore, in the present work soluble ladderized oligomers based on thiophene and carbazole with different end group were made and tested in OFET devices. Carbazole is an attractive raw material for the synthesis of dyes since it is cheap and readily available. Carbazoledioxazine, commercially known as violet 23 is a representative compound of dioxazine pigments. As part of our efforts into developing cheap alternatives to violet 23, the synthesis and characterization of a new series of dyes by Buchwald-type coupling of 3-aminocarbazole with various isomers of chloroanthraquinone are presented.
Resumo:
Conjugated polymers and conjugated polymer blends have attracted great interest due to their potential applications in biosensors and organic electronics. The sub-100 nm morphology of these materials is known to heavily influence their electromechanical properties and the performance of devices they are part of. Electromechanical properties include charge injection, transport, recombination, and trapping, the phase behavior and the mechanical robustness of polymers and blends. Electrical scanning probe microscopy techniques are ideal tools to measure simultaneously electric (conductivity and surface potential) and dielectric (dielectric constant) properties, surface morphology, and mechanical properties of thin films of conjugated polymers and their blends.rnIn this thesis, I first present a combined topography, Kelvin probe force microscopy (KPFM), and scanning conductive torsion mode microscopy (SCTMM) study on a gold/polystyrene model system. This system is a mimic for conjugated polymer blends where conductive domains (gold nanoparticles) are embedded in a non-conductive matrix (polystyrene film), like for polypyrrole:polystyrene sulfonate (PPy:PSS), and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). I controlled the nanoscale morphology of the model by varying the distribution of gold nanoparticles in the polystyrene films. I studied the influence of different morphologies on the surface potential measured by KPFM and on the conductivity measured by SCTMM. By the knowledge I gained from analyzing the data of the model system I was able to predict the nanostructure of a homemade PPy:PSS blend.rnThe morphologic, electric, and dielectric properties of water based conjugated polymer blends, e.g. PPy:PSS or PEDOT:PSS, are known to be influenced by their water content. These properties also influence the macroscopic performance when the polymer blends are employed in a device. In the second part I therefore present an in situ humidity-dependence study on PPy:PSS films spin-coated and drop-coated on hydrophobic highly ordered pyrolytic graphite substrates by KPFM. I additionally used a particular KPFM mode that detects the second harmonic electrostatic force. With this, I obtained images of dielectric constants of samples. Upon increasing relative humidity, the surface morphology and composition of the films changed. I also observed that relative humidity affected thermally unannealed and annealed PPy:PSS films differently. rnThe conductivity of a conjugated polymer may change once it is embedded in a non-conductive matrix, like for PPy embedded in PSS. To measure the conductivity of single conjugated polymer particles, in the third part, I present a direct method based on microscopic four-point probes. I started with metal core-shell and metal bulk particles as models, and measured their conductivities. The study could be extended to measure conductivity of single PPy particles (core-shell and bulk) with a diameter of a few micrometers.
Resumo:
Stabile Radikale haben in vielen Bereichen der Chemie, Physik, Biologie und Biomedizin ihren Nutzen unter Beweis gestellt. Gerade im letzten Jahrzehnt erlebte diese Substanzklasse vor allem wegen den Anwendungsmöglichkeiten von Nitroxiden als Red-Ox-Sensoren oder magnetischen Materialen ein erneutes Interesse. Das erste Kapitel beschäftigt sich mit der grundlegenden Theorie zur Entwicklung magnetischer Materialien. Des Weiteren sollen anhand einiger Beispiele Radikale im Komplex mit paragmagnetischen Metallen, Biradikale und Polyradikale beschrieben werden. rnrnIm zweiten Kapitel soll auf die Synthese von Hybrid Fluorophore-Nitrononyl-Nitroxid und Iminonitroxidradiale, sowie ihre Charakterisierung über IR, CV, EPR und Röntgenstrukturanalyse eingegangen werden. Mittels UV/Vis-Spektroskopie soll hierbei eine mögliche Anwendung als Red-Ox-Sensoren festgestellt werden. Hierbei werden über anschließende PL Untersuchungen eben diese Sensoreigenschaften der dargestellten Radikale bestätigt werden. Vielmehr noch soll die Möglichkeit von Pyren-Pyrazol-Nitronyl-Nitroxid als NO-Nachweis erläutert werden.rnrnFortschritte sowohl im Design als auch in der Analyse von magnetischen Materialen auf der Basis von Nitroxiden ist Thema des dritten Kapitels. Über ein klassisches Ullmann-Protokoll wurden verschiedene Nitronyl-Nitroxid und Iminonitroxid Biradiale mit unterschiedlichen π-Brücken zwischen den Radikalzentren synthetisiert. Magnetische Messungen belegen einen relativ starken antiferromagnetischen intramolekularen Austausch für den Großteil der untersuchten Biradikale. Hierbei zeigte sich jedoch eine außergewöhnliche hohe Austausch-Kupplung für 3,3‘-Diazatolandiradikale, die nur über die Existenz von starken intermolekularen Wechselwirkungen beschrieben werden kann. Durch Kombination der Röntgenstrukturanalyse mit DFT Berechnungen konnte im Fall des Tolan verbrückten Diradikals 87c die Intra-Dimer-Kupplung auf Jintra = -8,6 K bestimmt werden. Ein direkter Beweis für eine intermolekulare Anlagerung von Jinter ~- 2K konnte über eine Tieftemperatur AC-Messung von 87c erhalten werden. Bezüglich der magnetischen Messung ist das Nitronyl Biradikal 87c ein vielversprechender Kandidat für einen rein organischen eindimensionalen Quantenmagnet.rnrnAbsicht dieser Untersuchungen ist es zu zeigen, dass über die Kombination verschiedener struktureller Elemente die Sensitivität von Nitroxid basierten Sensoren und die intramolekulare Austauschwechselwirkung in π-konjugierten Spinsystemen so eingestellt werden kann, dass es möglich ist Moleküle mit gezielten Sensor- oder Magneteigenschaften zu entwickeln. rn