3 resultados para Computational Intelligence System

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this thesis is to further the understanding of the structural, electronic and magnetic properties of ternary inter-metallic compounds using density functional theory (DFT). Four main problems are addressed. First, a detailed analysis on the ternary Heusler compounds is made. It has long been known that many Heusler compounds ($X_2YZ$; $X$ and $Y$ transition elements, $Z$ main group element) exhibit interesting half-metallic and ferromagnetic properties. In order to understand these, the dependence of magnetic and electronic properties on the structural parameters, the type of exchange-correlation functional and electron-electron correlation was examined. It was found that almost all Co$_2YZ$ Heusler compounds exhibit half-metallic ferromagnetism. It is also observed that $X$ and $Y$ atoms mainly contribute to the total magnetic moment. The magnitude of the total magnetic moment is determined only indirectly by the nature of $Z$ atoms, and shows a trend consistent with Slater-Pauling behaviour in several classes of these compounds. In contrast to experiments, calculations give a non-integer value of the magnetic moment in certain Co$_2$-based Heusler compounds. To explain deviations of the calculated magnetic moment, the LDA+$U$ scheme was applied and it was found that the inclusion of electron-electron correlation beyond the LSDA and GGA is necessary to obtain theoretical description of some Heusler compounds that are half-metallic ferromagnets. The electronic structure and magnetic properties of substitutional series of the quaternary Heusler compound Co$_2$Mn$_{1-x}$Fe$_x$Si were investigated under LDA+$U$. The calculated band structure suggest that the most stable compound in a half-metallic state will occur at an intermediate Fe concentration. These calculated findings are qualitatively confirmed by experimental studies. Second, the effect of antisite disordering in the Co$_2$TiSn system was investigated theoretically as well as experimentally. Preservation of half-metallicity for Co$_2$TiSn was observed with moderate antisite disordering and experimental findings suggest that the Co and Ti antisites disorder amounts to approximately 10~% in the compound. Third, a systematic examination was carried out for band gaps and the nature (covalent or ionic) of bonding in semiconducting 8- and 18-electron or half-metallic ferromagnet half-Heusler compounds. It was found that the most appropriate description of these compounds from the viewpoint of electronic structures is one of a $YZ$ zinc blende lattice stuffed by the $X$ ion. Simple valence rules are obeyed for bonding in the 8- and 18-electron compounds. Fourth, hexagonal analogues of half-Heusler compounds have been searched. Three series of compounds were investigated: GdPdSb, GdAutextit{X} (textit{X} = Mn, Cd and In) and EuNiP. GdPdSb is suggested as a possible half-metallic weak ferromagnet at low temperature. GdAutextit{X} (textit{X} = Mn, Cd and In) and EuNiP were investigated because they exhibit interesting bonding, structural and magnetic properties. The results qualitatively confirm experimental studies on magnetic and structural behaviour in GdPdSb, GdAutextit{X} (textit{X} = Mn, Cd and In) and EuNiP compounds. ~

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Im Forschungsgebiet der Künstlichen Intelligenz, insbesondere im Bereich des maschinellen Lernens, hat sich eine ganze Reihe von Verfahren etabliert, die von biologischen Vorbildern inspiriert sind. Die prominentesten Vertreter derartiger Verfahren sind zum einen Evolutionäre Algorithmen, zum anderen Künstliche Neuronale Netze. Die vorliegende Arbeit befasst sich mit der Entwicklung eines Systems zum maschinellen Lernen, das Charakteristika beider Paradigmen in sich vereint: Das Hybride Lernende Klassifizierende System (HCS) wird basierend auf dem reellwertig kodierten eXtended Learning Classifier System (XCS), das als Lernmechanismus einen Genetischen Algorithmus enthält, und dem Wachsenden Neuralen Gas (GNG) entwickelt. Wie das XCS evolviert auch das HCS mit Hilfe eines Genetischen Algorithmus eine Population von Klassifizierern - das sind Regeln der Form [WENN Bedingung DANN Aktion], wobei die Bedingung angibt, in welchem Bereich des Zustandsraumes eines Lernproblems ein Klassifizierer anwendbar ist. Beim XCS spezifiziert die Bedingung in der Regel einen achsenparallelen Hyperquader, was oftmals keine angemessene Unterteilung des Zustandsraumes erlaubt. Beim HCS hingegen werden die Bedingungen der Klassifizierer durch Gewichtsvektoren beschrieben, wie die Neuronen des GNG sie besitzen. Jeder Klassifizierer ist anwendbar in seiner Zelle der durch die Population des HCS induzierten Voronoizerlegung des Zustandsraumes, dieser kann also flexibler unterteilt werden als beim XCS. Die Verwendung von Gewichtsvektoren ermöglicht ferner, einen vom Neuronenadaptationsverfahren des GNG abgeleiteten Mechanismus als zweites Lernverfahren neben dem Genetischen Algorithmus einzusetzen. Während das Lernen beim XCS rein evolutionär erfolgt, also nur durch Erzeugen neuer Klassifizierer, ermöglicht dies dem HCS, bereits vorhandene Klassifizierer anzupassen und zu verbessern. Zur Evaluation des HCS werden mit diesem verschiedene Lern-Experimente durchgeführt. Die Leistungsfähigkeit des Ansatzes wird in einer Reihe von Lernproblemen aus den Bereichen der Klassifikation, der Funktionsapproximation und des Lernens von Aktionen in einer interaktiven Lernumgebung unter Beweis gestellt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die vorliegende Arbeit behandelt die Entwicklung und Verbesserung von linear skalierenden Algorithmen für Elektronenstruktur basierte Molekulardynamik. Molekulardynamik ist eine Methode zur Computersimulation des komplexen Zusammenspiels zwischen Atomen und Molekülen bei endlicher Temperatur. Ein entscheidender Vorteil dieser Methode ist ihre hohe Genauigkeit und Vorhersagekraft. Allerdings verhindert der Rechenaufwand, welcher grundsätzlich kubisch mit der Anzahl der Atome skaliert, die Anwendung auf große Systeme und lange Zeitskalen. Ausgehend von einem neuen Formalismus, basierend auf dem großkanonischen Potential und einer Faktorisierung der Dichtematrix, wird die Diagonalisierung der entsprechenden Hamiltonmatrix vermieden. Dieser nutzt aus, dass die Hamilton- und die Dichtematrix aufgrund von Lokalisierung dünn besetzt sind. Das reduziert den Rechenaufwand so, dass er linear mit der Systemgröße skaliert. Um seine Effizienz zu demonstrieren, wird der daraus entstehende Algorithmus auf ein System mit flüssigem Methan angewandt, das extremem Druck (etwa 100 GPa) und extremer Temperatur (2000 - 8000 K) ausgesetzt ist. In der Simulation dissoziiert Methan bei Temperaturen oberhalb von 4000 K. Die Bildung von sp²-gebundenem polymerischen Kohlenstoff wird beobachtet. Die Simulationen liefern keinen Hinweis auf die Entstehung von Diamant und wirken sich daher auf die bisherigen Planetenmodelle von Neptun und Uranus aus. Da das Umgehen der Diagonalisierung der Hamiltonmatrix die Inversion von Matrizen mit sich bringt, wird zusätzlich das Problem behandelt, eine (inverse) p-te Wurzel einer gegebenen Matrix zu berechnen. Dies resultiert in einer neuen Formel für symmetrisch positiv definite Matrizen. Sie verallgemeinert die Newton-Schulz Iteration, Altmans Formel für beschränkte und nicht singuläre Operatoren und Newtons Methode zur Berechnung von Nullstellen von Funktionen. Der Nachweis wird erbracht, dass die Konvergenzordnung immer mindestens quadratisch ist und adaptives Anpassen eines Parameters q in allen Fällen zu besseren Ergebnissen führt.