2 resultados para Complexity theory
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Kulturlandschaften als Ausdruck einer über viele Jahrhunderte währenden intensiven Interaktion zwischen Menschen und der sie umgebenden natürlichen Umwelt, sind ein traditionelles Forschungsobjekt der Geographie. Mensch/Natur-Interaktionen führen zu Veränderungen der natürlichen Umwelt, indem Menschen Landschaften kultivieren und modifizieren. Die Mensch/Natur-Interaktionen im Weinbau sind intensiv rückgekoppelt, Veränderungen der natürlichen Umwelt wirken auf die in den Kulturlandschaften lebenden und wirtschaftenden Winzer zurück und beeinflussen deren weiteres Handeln, was wiederum Einfluss auf die Entwicklung der gesamten Weinbau-Kulturlandschaft hat. Kulturlandschaft wird aus diesem Grund als ein heterogenes Wirkungsgefüge sozialer und natürlicher Elemente konzeptionalisiert, an dessen Entwicklung soziale und natürliche Elemente gleichzeitig und wechselseitig beteiligt sind. Grundlegend für die vorliegende Arbeit ist die Überzeugung, dass sich Kulturlandschaften durch Mensch/Natur-Interaktionen permanent neu organisieren und nie in einen Gleichgewichtszustand geraten, sondern sich ständig weiterentwickeln und wandeln. Die Komplexitätstheorie bietet hierfür die geeignete theoretische Grundlage. Sie richtet ihren Fokus auf die Entwicklung und den Wandel von Systemen und sucht dabei nach den Funktionsweisen von Systemzusammenhängen, um ein Verständnis für das Gesamtsystemverhalten von nicht-linearen dynamischen Systemen zu erreichen. Auf der Grundlage der Komplexitätstheorie wird ein Untersuchungsschema entwickelt, dass es ermöglich, die sozio-ökonomischen und raum-strukturellen Veränderungsprozesse in der Kulturlandschaftsentwicklung als sich wechselseitig beeinflussenden Systemzusammenhang zu erfassen. Die Rekonstruktion von Entwicklungsphasen, die Analysen von raum-strukturellen Mustern und Akteurskonstellationen sowie die Identifikation von Bifurkationspunkten in der Systemgeschichte sind dabei von übergeordneter Bedeutung. Durch die Untersuchung sowohl der physisch-räumlichen als auch der sozio-ökonomischen Dimension der Kulturlandschaftsentwicklung im Weinbau des Oberen Mittelrheintals soll ein Beitrag für die geographische Erforschung von Mensch/Natur-Interaktionen im Schnittstellenbereich von Physischer Geographie und Humangeographie geleistet werden. Die Anwendung des Untersuchungsschemas erfolgt auf den Weinbau im Oberen Mittelrheintal. Das Anbaugebiet ist seit vielen Jahrzehnten einem starken Rückgang an Weinbaubetrieben und Rebfläche unterworfen. Die rückläufigen Entwicklungen seit 1950 verliefen dabei nicht linear, sondern differenzierten das System in unterschiedliche Entwicklungspfade aus. Die Betriebsstrukturen und die Rahmenbedingungen im Weinbau veränderten sich grundlegend, was sichtbare Spuren in der Kulturlandschaft hinterließ. Dies zu rekonstruieren, zu analysieren und die zu verschiedenen Phasen der Entwicklung bedeutenden externen und internen Einflussfaktoren zu identifizieren, soll dazu beitragen, ein tief greifendes Verständnis für das selbstorganisierte Systemverhalten zu generieren und darauf basierende Handlungsoptionen für zukünftige Eingriffe in die Systementwicklung aufzuzeigen
Resumo:
I present a new experimental method called Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy (TIR-FCCS). It is a method that can probe hydrodynamic flows near solid surfaces, on length scales of tens of nanometres. Fluorescent tracers flowing with the liquid are excited by evanescent light, produced by epi-illumination through the periphery of a high NA oil-immersion objective. Due to the fast decay of the evanescent wave, fluorescence only occurs for tracers in the ~100 nm proximity of the surface, thus resulting in very high normal resolution. The time-resolved fluorescence intensity signals from two laterally shifted (in flow direction) observation volumes, created by two confocal pinholes are independently measured and recorded. The cross-correlation of these signals provides important information for the tracers’ motion and thus their flow velocity. Due to the high sensitivity of the method, fluorescent species with different size, down to single dye molecules can be used as tracers. The aim of my work was to build an experimental setup for TIR-FCCS and use it to experimentally measure the shear rate and slip length of water flowing on hydrophilic and hydrophobic surfaces. However, in order to extract these parameters from the measured correlation curves a quantitative data analysis is needed. This is not straightforward task due to the complexity of the problem, which makes the derivation of analytical expressions for the correlation functions needed to fit the experimental data, impossible. Therefore in order to process and interpret the experimental results I also describe a new numerical method of data analysis of the acquired auto- and cross-correlation curves – Brownian Dynamics techniques are used to produce simulated auto- and cross-correlation functions and to fit the corresponding experimental data. I show how to combine detailed and fairly realistic theoretical modelling of the phenomena with accurate measurements of the correlation functions, in order to establish a fully quantitative method to retrieve the flow properties from the experiments. An importance-sampling Monte Carlo procedure is employed in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for both modern desktop PC machines and massively parallel computers. The latter allows making the data analysis within short computing times. I applied this method to study flow of aqueous electrolyte solution near smooth hydrophilic and hydrophobic surfaces. Generally on hydrophilic surface slip is not expected, while on hydrophobic surface some slippage may exists. Our results show that on both hydrophilic and moderately hydrophobic (contact angle ~85°) surfaces the slip length is ~10-15nm or lower, and within the limitations of the experiments and the model, indistinguishable from zero.