2 resultados para Complex domains
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
A thorough investigation was made of the structure-property relation of well-defined statistical, gradient and block copolymers of various compositions. Among the copolymers studied were those which were synthesized using isobornyl acrylate (IBA) and n-butyl acrylate (nBA) monomer units. The copolymers exhibited several unique properties that make them suitable materials for a range of applications. The thermomechanical properties of these new materials were compared to acrylate homopolymers. By the proper choice of the IBA/nBA monomer ratio, it was possible to tune the glass transition temperature of the statistical P(IBA-co-nBA) copolymers. The measured Tg’s of the copolymers with different IBA/nBA monomer ratios followed a trend that fitted well with the Fox equation prediction. While statistical copolymers showed a single glass transition (Tg between -50 and 90 ºC depending on composition), DSC block copolymers showed two Tg’s and the gradient copolymer showed a single, but very broad, glass transition. PMBL-PBA-PMBL triblock copolymers of different composition ratios were also studied and revealed a microphase separated morphology of mostly cylindrical PMBL domains hexagonally arranged in the PBA matrix. DMA studies confirmed the phase separated morphology of the copolymers. Tensile studies showed the linear PMBL-PBA-PMBL triblock copolymers having a relatively low elongation at break that was increased by replacing the PMBL hard blocks with the less brittle random PMBL-r-PMMA blocks. The 10- and 20-arm PBA-PMBL copolymers which were studied revealed even more unique properties. SAXS results showed a mixture of cylindrical PMBL domains hexagonally arranged in the PBA matrix, as well as lamellar. Despite PMBL’s brittleness, the triblock and multi-arm PBA-PMBL copolymers could become suitable materials for high temperature applications due to PMBL’s high glass transition temperature and high thermal stability. The structure-property relation of multi-arm star PBA-PMMA block copolymers was also investigated. Small-angle X-ray scattering revealed a phase separated morphology of cylindrical PMMA domains hexagonally arranged in the PBA matrix. DMA studies found that these materials possess typical elastomeric behavior in a broad range of service temperatures up to at least 250°C. The ultimate tensile strength and the elastic modulus of the 10- and 20-arm star PBA-PMMA block copolymers are significantly higher than those of their 3-arm or linear ABA type counterparts with similar composition, indicating a strong effect of the number of arms on the tensile properties. Siloxane-based copolymers were also studied and one of the main objectives here was to examine the possibility to synthesize trifluoropropyl-containing siloxane copolymers of gradient distribution of trifluoropropyl groups along the chain. DMA results of the PDMS-PMTFPS siloxane copolymers synthesized via simultaneous copolymerization showed that due to the large difference in reactivity rates of 2,4,6-tris(3,3,3-trifluoropropyl)-2,4,6-trimethylcyclotrisiloxane (F) and hexamethylcyclotrisiloxane (D), a copolymer of almost block structure containing only a narrow intermediate fragment with gradient distribution of the component units was obtained. A more dispersed distribution of the trifluoropropyl groups was obtained by the semi-batch copolymerization process, as the DMA results revealed more ‘‘pure gradient type’’ features for the siloxane copolymers which were synthesized by adding F at a controlled rate to the polymerization of the less reactive D. As with trifluoropropyl-containing siloxane copolymers, vinyl-containing polysiloxanes may be converted to a variety of useful polysiloxane materials by chemical modification. But much like the trifluoropropyl-containing siloxane copolymers, as a result of so much difference in the reactivities between the component units 2,4,6-trivinyl-2,4,6-trimethylcyclotrisiloxane (V) and hexamethylcyclotrisiloxane (D), thermal and mechanical properties of the PDMS-PMVS copolymers obtained by simultaneous copolymerization was similar to those of block copolymers. Only the copolymers obtained by semi-batch method showed properties typical for gradient copolymers.
Resumo:
The present thesis deals with the development of new branched polymer architectures containing hyperbranched polyglycerol. Materials investigated include hyperbranched oligomers, hyperbranched polyglycerols containing functional initiator-cores at the focal point, well-defined linear-hyperbranched block copolymers and also negatively charged hyperbranched polyelectrolytes.rnHyperbranched oligoglycerols (DPn = 7 and 14) have been synthesized for the first time. The materials show narrow polydispersity (Mw/Mn ca. 1.45) and a very low content in cyclic homopolymers. 13C NMR evidences the dendritic structure of the oligomers and the DB could be calculated (44% and 52%). These new oligoglycerols were compared with the industrial products obtained by polycondensation which exhibit narrow polydispersity (Mw/Mn<1.3) butrnmultimodal distribution in SEC. Detailed 13C NMR and Maldi-ToF studies reveal the presence of branched units and cyclic compounds. In comparison, the hyperbranched oligoglycerols comprise a very low proportion of cyclic homopolymer which render them very interesting materials for biomedical applications for example.rnThe site isolation of the core moiety in dendritic structure offers intriguing potential with respect to peculiar electro-optical properties. Various initiator-cores (n-alkyl amines, UVabsorbing amines and benzophenone) for the ROMBP of glycidol have been tested. The bisglycidolized amine initiator-cores show the best control over the molecular weight and the molecular weight distribution. The photochemical analyses of the naphthalene containingrnhyperbranched polyglycerols show a slight red shift, a pronounced hypochromic effect (decrease of the intensity of the band) compared with the parent model compound and the formation of a relative compact structure. The benzophenone containing polymers adopt an open structure in polar solvents. The fluorescence measurements show a clear “dendritic effect” on the fluorescence intensities and the quantum yield of the encapsulated benzophenone.rnA convenient 3-step strategy has been developed for the preparation of well-defined amphiphilic, linear-hyperbranched block copolymers via hypergrafting. The procedure represents a combination of carbanionic polymerization with the alkoxide-based, controlled ring-opening multibranching polymerization of glycidol. Materials consisting of a polystyrene linear block and a hyperbranched polyglycerol block exhibit narrow polydispersity (1.01-1.02rnfor 5.4% to 27% wt. PG and 1.74 for 52% wt. PG) with a high grafting efficiency. The strategy was also extended to materials with a linear polyisoprene block.rnDetailed investigations of the solution properties of the block copolymers with linear polystyrene blocks show that block copolymer micelles are stabilized by the highly branched block. The morphology of the aggregates is depending on the solvent: in chloroform monodisperse spherical shape aggregates and in toluene ellipsoidal aggregates are formed. On graphite these aggregates show interesting features, giving promising potential applications with respect to the presence of a very dense, functional and stable hyperbranched block.rnThe bulk morphology of the linear-hyperbranched block copolymers has been investigated. The materials with a linear polyisoprene block only behave like complex liquids due to the low Tg and the disordered nature of both components. For the materials with polystyrene, only the sample with 27% wt. hyperbranched polyglycerol forms some domains showing lamellae.rnThe preparation of hyperbranched polyelectrolytes was achieved by post-modification of the hydroxyl groups via Michael addition of acrylonitrile, followed by hydrolysis. In aqueous solution materials form large aggregates with size depending on the pH value. After deposition on mica the structures observed by AFM show the coexistence of aggregates andrnunimers. For the low molecular weight sample (PG 520 g·mol-1) extended and highly ordered terrace structures were observed. Materials were also successfully employed for the fabrication of composite organic-inorganic multilayer thin films, using electrostatic layer-bylayer self-assembly coupled with chemical vapor deposition.