3 resultados para Combinatorial game theory

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Declining birthrates are causing problems on different levels of societal structure. The much discussed necessity to restructure pension-systems is only one part of a much bigger problem our society faces. There are numerous scientific theories and studies on the causes and resulting problems of declining birthrates. The results of these are not easily comparable and relatively unconnected. The aim of this dissertation is to discuss them within a new frame. Starting with Hartmut Esser´s Theory of Rational Choice and using other modifications of rational decision making theory (i.e. microeconomic modelling, game theory etc.) a new theoretical position as well as an integrated model of fertility behaviour is developed. In this frame the probable causes of declining birth rates are discussed with respect to situational factors (logic of situation) as well as decision-immanent factors (logic of selection). The model is completed by an extensive discussion of the resulting societal changes (logic of aggregation).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Der Rational-Choice-Ansatz (RCA) hat in den letzten Jahrzehnten eine weite Ver-rnbreitung in vielen sozialwissenschaftlichen Disziplinen erfahren. Insbesondere in den letzten zwei Jahrzehnten gab es wiederholte Bemühungen, den RCA auchrnauf geschichtswissenschaftliche Fragestellungen und Themen anzuwenden. Ein interssanter Ansatz dafür ist eine integrative Methodik, die unter der Bezeichnung „Analytic Narrative“ bekannt wurde. Damit wird versucht, die klassische narrative Form der Erklärung historischer Phänomene mit spieltheoretischen Modellierungen zu verbinden. Inspiriert durch diesen Ansatz geht die vorliegende Untersuchung der Frage nach, in welcher Form und unter welchen Umständen der RCA als analytische Grundlage für historische Themenfelder und Fragestellungen geeignet sein mag. Dies wird nicht nur theoretisch, sondern an einem historischen Beispiel untersucht. Konkreter Betrachtungsgegenstand der Arbeit ist der Vierte Kreuzzug. Vor über 800 Jahren endete dieser mit der Eroberung und Plünderung Konstantinopels sowie der Zerschlagung des Byzantinischen Reichs. Seit mehr als 150 Jahren streiten Historiker über die Ursachen für diese Ereignisse. Die theoretischenrnGrundpositionen, die innerhalb dieser Debatte durch einzelne Historiker einge-rnnommen wurden, dienen als Ausgangspunkt für die hier verfolgte Untersuchung.rnEs wird gezeigt, dass die Daten, die uns über den Vierten Kreuzzug vorliegen,rndie Möglichkeit eröffnen, verschiedene auf dem RCA basierende Analyseverfah-rnren zur Anwendung zu bringen. Das zentrale Ziel der Analyse besteht darin, ausrnden vorhandenen Quellen neue Einsichten in die strategischen Handlungsoptionen der für den Verlauf des Kreuzzugs relevanten Akteure zu generieren undrnüberdies ein Höchstmaß an Überprüfbarkeit zu gewährleisten.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals.rnrnThe integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph.rnrnStarting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative step to an abstract combinatorial problem, known as Hironaka's polyhedra game. We present a publicly available implementation of the improved algorithm. Furthermore we explain the relationship of the sector decomposition method with the resolution of singularities of a variety, given by a sequence of blow-ups, in algebraic geometry.rnrnMotivated by the connection between Feynman integrals and topics of algebraic geometry we consider the set of periods as defined by Kontsevich and Zagier. This special set of numbers contains the set of multiple zeta values and certain values of polylogarithms, which in turn are known to be present in results for Laurent coefficients of certain dimensionally regularized Feynman integrals. By use of the extended sector decomposition algorithm we prove a theorem which implies, that the Laurent coefficients of an arbitrary Feynman integral are periods if the masses and kinematical invariants take values in the Euclidean momentum region. The statement is formulated for an even more general class of integrals, allowing for an arbitrary number of polynomials in the integrand.