2 resultados para Color vision.
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Der Goldfisch besitzt, im Gegensatz zum Menschen, ein tetrachromatisches Farbensehsystem, das außerordentlich gut untersucht ist. Die Farben gleicher Helligkeit lassen sich hier in einem dreidimensionalen Tetraeder darstellen. Ziel der vorliegenden Arbeit war es herauszufinden, wie gut der Goldfisch Farben, die dem Menschen ungesättigt erscheinen und im Inneren des Farbtetraeders liegen, unterscheiden kann. Des Weiteren stellte sich die Frage, ob sowohl „Weiß“ (ohne UV) als auch Xenonweiß (mit UV) vom Fisch als „unbunt“ oder „neutral“ wahrgenommenen werden. Um all dies untersuchen zu können, musste ein komplexer Versuchsaufbau entwickelt werden, mit dem den Fischen monochromatische und mit Weiß gemischte Lichter gleicher Helligkeit, sowie Xenonweiß gezeigt werden konnte. Die Fische erlernten durch operante Konditionierung einen Dressurstimulus (monochromatisches Licht der Wellenlängen 660 nm, 599 nm, 540 nm, 498 nm oder 450 nm) von einem Vergleichsstimulus (Projektorweiß) zu unterscheiden. Im Folgenden wurde dem Vergleichstimulus in 10er-Schritten immer mehr der jeweiligen Dressurspektralfarbe beigemischt, bis die Goldfische keine sichere Wahl für den Dressurstimulus mehr treffen konnten. Die Unterscheidungsleistung der Goldfische wurde mit zunehmender Beimischung von Dressurspektralfarbe zum Projektorweiß immer geringer und es kristallisierte sich ein Bereich in der Grundfläche des Tetraeders heraus, in dem die Goldfische keine Unterscheidung mehr treffen konnten. Um diesen Bereich näher zu charakterisieren, bekamen die Goldfische Mischlichter, bei denen gerade keine Unterscheidung mehr zum Projektorweiß möglich war, in Transfertests gezeigt. Da die Goldfische diese Mischlichter nicht voneinander unterscheiden konnten, läßt sich schließen, dass es einen größeren Bereich gibt, der, ebenso wie Weiß (ohne UV) für den Goldfisch „neutral“ erscheint. Wenn nun Weiß (ohne UV) für den Goldfisch „neutral“ erscheint, sollte es dem Xenonweiß ähnlich sein. Die Versuche zeigten allerdings, dass die Goldfische die Farben Weiß (ohne UV) und Xenonweiß als verschieden wahrnehmen. Betrachtet man die Sättigung für die Spektralfarben, so zeigte sich, dass die Spektralfarbe 540 nm für den Goldfisch am gesättigsten, die Spektralfarbe 660 nm am ungesättigsten erscheint.
Resumo:
Die vorliegende Arbeit verfolgte mehrere Ziele. Die Hauptaufgabe war es, farbsensitive und bewegungssensitive Neurone im Tectum opticum des Goldfisches zu finden und diese hinsichtlich ihres Antwortverhaltens zu charakterisieren. Aus Verhaltensversuchen ist bekannt, dass sowohl das Ganzfeldbewegungssehen als auch das Objektbewegungssehen „farbenblind“ ist, da die Verarbeitung dieser Sehleistungen jeweils nur von einem Zapfentyp getrieben wird. Es sollte untersucht werden, ob sich diese Farbenblindheit auch auf Ebene der tectalen bewegungsempfindlichen Neurone finden lässt. Schließlich sollten die Ableitorte im Tectum opticum kartiert werden, um festzustellen, ob es jeweils bestimmte örtlich abgegrenzte Areale für Farbe einerseits und für Bewegung andererseits gibt.rnDie Aktivität von tectalen Units wurde durch extrazelluläre Ableitungen registriert. Um farbspezifische Neurone zu identifizieren und zu charakterisieren, wurden 21 verschiedene Farbpapiere (HKS-Standard) aus dem gesamten Farbenkreis (ausgenommen UV) präsentiert. Auf jedes Farbpapier folgte ein neutrales Graupapier. Des Weiteren wurde eine Schwarz-Weiß-Grau-Sequenz gezeigt, um das Antwortverhalten der Units auf Helligkeitswechsel zu prüfen. Jeder Stimulus wurde für fünf Sekunden präsentiert und die gesamte Stimulussequenz wurde mindestens dreimal wiederholt. Zur Identifizierung bewegungssensitiver Neurone wurde ein sich exzentrisch bewegendes schwarz-weißes Zufallspunktmuster präsentiert. Um die „Farbenblindheit“ des Bewegungssehens zu testen, wurden zwei rot-grüne Zufallspunktmuster präsentiert, die den L-Zapfen des Goldfisches unterschiedlich stark modulierten. Den meisten Units wurden sowohl die Farb- als auch die Bewegungsstimuli gezeigt.rnEs konnten 69 Units abgeleitet werden. Von diesen antworteten 34 sowohl auf Farbstimuli als auch auf Helligkeitsreize, 19 Units reagierten ausschließlich auf Farbstimuli, 15 Units zeigten sich nur für den Bewegungsstimulus sensitiv und zwei Units beantworteten ausschließlich Helligkeitswechsel. Die farbempfindlichen Units konnten in 14 Gruppen eingeteilt werden: sechs Gruppen im Rotbereich (22 Units), fünf Gruppen im Blau-Grünbereich (21 Units), eine Gruppe im Gelbbereich (zwei Units), eine Gruppe, die alle Farbstimuli mit Erhöhung der Aktivität (sechs Units) und eine Gruppe, die alle Farbstimuli mit Erniedrigung der Aktivität (eine Unit) beantwortete. Es wurden zwei Arten von Gegenfarbzellen gefunden: Rot-ON/Blau-und-Grün-OFF (12 Units) und Rot-OFF/Blau-und-Grün-ON (sieben Units). Es wurden verschiedene zeitliche Antwortmuster gefunden. Während einige Units nur Reizwechsel beantworteten, zeigten die meisten Units ein tonisches Antwortverhalten. Manche Units beantworteten jeden Stimuluswechsel phasisch und darüber hinaus bestimmte Stimuli tonisch. Die meisten tectalen Neurone zeigten eine Grundaktivität. Alle Units, denen sowohl der Farb- als auch der Bewegungsstimulus gezeigt wurden, antworteten nur auf eine Stimulusart. rnDiese Ergebnisse lassen folgende Schlüsse zu: Die Verarbeitung von Farbe und Bewegung im Tectum opticum des Goldfischs wird über zwei unterschiedlichen Verarbeitungswegen geleistet, da alle Units entweder auf Farb- oder auf Bewegungsstimuli antworten. Das Bewegungssehen wird im Goldfisch durch nur einen Zapfentyp (M- oder L-Zapfen) vermittelt und ist somit “farbenblind”, da alle bewegungssensitiven Units die Aktivität einstellten, wenn der Stimulus nur noch einen Zapfentyp modulierte. Es scheint spezifische Areale für „Farbe“ und „Bewegung“ im Tectum opticum des Goldfisches zu geben, da bewegungssensitive Units bevorzugt im posterio-medialen Bereich in einer Tiefe zwischen 200-400 µm gefunden und farbspezifische Units vor allem im anterio-medialen Bereich entdeckt wurden.