3 resultados para Carrier concentration

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The world's rising demand of energy turns the development of sustainable and more efficient technologies for energy production and storage into an inevitable task. Thermoelectric generators, composed of pairs of n-type and p-type semiconducting materials, di¬rectly transform waste heat into useful electricity. The efficiency of a thermoelectric mate¬rial depends on its electronic and lattice properties, summarized in its figure of merit ZT. Desirable are high electrical conductivity and Seebeck coefficients, and low thermal con¬ductivity. Half-Heusler materials are very promising candidates for thermoelectric applications in the medium¬ temperature range such as in industrial and automotive waste heat recovery. The advantage of Heusler compounds are excellent electronic properties and high thermal and mechanical stability, as well as their low toxicity and elemental abundance. Thus, the main obstacle to further enhance their thermoelectric performance is their relatively high thermal conductivity.rn rnIn this work, the thermoelectric properties of the p-type material (Ti/Zr/Hf)CoSb1-xSnx were optimized in a multistep process. The concept of an intrinsic phase separation has recently become a focus of research in the compatible n-type (Ti/Zr/Hf)NiSn system to achieve low thermal conductivities and boost the TE performance. This concept is successfully transferred to the TiCoSb system. The phase separation approach can form a significant alternative to the previous nanostructuring approach via ball milling and hot pressing, saving pro¬cessing time, energy consumption and increasing the thermoelectric efficiency. A fundamental concept to tune the performance of thermoelectric materials is charge carrier concentration optimization. The optimum carrier concentration is reached with a substitution level for Sn of x = 0.15, enhancing the ZT about 40% compared to previous state-of-the-art samples with x = 0.2. The TE performance can be enhanced further by a fine-tuning of the Ti-to-Hf ratio. A correlation of the microstructure and the thermoelectric properties is observed and a record figure of merit ZT = 1.2 at 710°C was reached with the composition Ti0.25Hf0.75CoSb0.85Sn0.15.rnTowards application, the long term stability of the material under actual conditions of operation are an important issue. The impact of such a heat treatment on the structural and thermoelectric properties is investigated. Particularly, the best and most reliable performance is achieved in Ti0.5Hf0.5CoSb0.85Sn0.15, which reached a maximum ZT of 1.1 at 700°C. The intrinsic phase separation and resulting microstructure is stable even after 500 heating and cooling cycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vinylphosphonic acid (VPA) was polymerized at 80 ºC by free radical polymerization to give polymers (PVPA) of different molecular weight depending on the initiator concentration. The highest molecular weight, Mw, achieved was 6.2 x 104 g/mol as determined by static light scattering. High resolution nuclear magnetic resonance (NMR) spectroscopy was used to gain microstructure information about the polymer chain. Information based on tetrad probabilities was utilized to deduce an almost atactic configuration. In addition, 13C-NMR gave evidence for the presence of head-head and tail-tail links. Refined analysis of the 1H NMR spectra allowed for the quantitative determination of the fraction of these links (23.5 percent of all links). Experimental evidence suggested that the polymerization proceeded via cyclopolymerization of the vinylphosphonic acid anhydride as an intermediate. Titration curves indicated that high molecular weight poly(vinylphosphonic acid) PVPA behaved as a monoprotic acid. Proton conductors with phosphonic acid moieties as protogenic groups are promising due to their high charge carrier concentration, thermal stability, and oxidation resistivity. Blends and copolymers of PVPA have already been reported, but PVPA has not been characterized sufficiently with respect to its polymer properties. Therefore, we also studied the proton conductivity behaviour of a well-characterized PVPA. PVPA is a conductor; however, the conductivity depends strongly on the water content of the material. The phosphonic acid functionality in the resulting polymer, PVPA, undergoes condensation leading to the formation of phosphonic anhydride groups at elevated temperature. Anhydride formation was found to be temperature dependent by solid state NMR. Anhydride formation affects the proton conductivity to a large extent because not only the number of charge carriers but also the mobility of the charge carriers seems to change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermoelectric generators (TEG) are solid state devices and are able to convert thermal energy directly into electricity and thus could play an important role in waste heat recovery in the near future. Half-Heusler (HH) compounds with the general formula MNiSn (M = Ti, Zr, Hf) built a promising class of materials for these applications because of their high Seebeck coefficients, their environmentally friendliness and their cost advantage over conventional thermoelectric materials.rnrnMuch of the existing literature on HH deals with thermoelectric characterization of n-type MNiSn and p-type MCoSb compounds. Studies on p-type MNiSn-based HHs are far fewer in number. To fabricate high efficient thermoelectric modules based on HH compounds, high performance p-type MNiSn systems need to be developed that are compatible with the existing n-type HH compounds. This thesis explores synthesis strategies for p-type MNiSn based compounds. In particular, the efficacy of transition metals (Sc, La) and main group elements (Al, Ga, In) as acceptor dopants on the Sn-site in ZrNiSn, was investigated by evaluating their thermoelectric performance. The most promising p-type materials could be achieved with transition metal dopants, where the introduction of Sc on the Zr side, yielded the highest Seebeck coefficient in a ternary NiSn-based HH compound up to this date. Hall effect and band gap measurements of this system showed, that the high mobility of minority carrier electrons dominate the transport properties at temperatures above 500 K. It could be shown that this is the reason, why n-type HH are successful TE materials for high temperature applications, and that p-types are subjected to bipolar effects which will lead to diminished thermoelectric efficiencies at high temperatures.rnrnTo complement the experimental investigations on different metal dopants and their influence on the TE properties of HH compounds, numerical solutions to the Boltzmann transport equation were used to predict the optimum carrier concentration where the maximum TE efficiency occurs for p-type HH compounds. The results for p-type samples showed that can not be treated within a simple parabolic band model approach, due to bipolar and multi-band effects.rnrnThe parabolic band model is commonly used for bulk TE materials. It is most accurate when the transport properties are dominated by one single carrier type. Since the transport properties of n-type HH are dominated by only one carrier type (high mobility electrons), it could be shown, that the use of a simple parabolic band model lead to a successful prediction of the optimized carrier concentration and thermoelectric efficiency in n-type HH compounds. rn