4 resultados para CVRP Packing Routing.

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the first full-fledged branch-and-price (bap) algorithm for the capacitated arc-routing problem (CARP). Prior exact solution techniques either rely on cutting planes or the transformation of the CARP into a node-routing problem. The drawbacks are either models with inherent symmetry, dense underlying networks, or a formulation where edge flows in a potential solution do not allow the reconstruction of unique CARP tours. The proposed algorithm circumvents all these drawbacks by taking the beneficial ingredients from existing CARP methods and combining them in a new way. The first step is the solution of the one-index formulation of the CARP in order to produce strong cuts and an excellent lower bound. It is known that this bound is typically stronger than relaxations of a pure set-partitioning CARP model.rnSuch a set-partitioning master program results from a Dantzig-Wolfe decomposition. In the second phase, the master program is initialized with the strong cuts, CARP tours are iteratively generated by a pricing procedure, and branching is required to produce integer solutions. This is a cut-first bap-second algorithm and its main function is, in fact, the splitting of edge flows into unique CARP tours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geometric packing problems may be formulated mathematically as constrained optimization problems. But finding a good solution is a challenging task. The more complicated the geometry of the container or the objects to be packed, the more complex the non-penetration constraints become. In this work we propose the use of a physics engine that simulates a system of colliding rigid bodies. It is a tool to resolve interpenetration conflicts and to optimize configurations locally. We develop an efficient and easy-to-implement physics engine that is specialized for collision detection and contact handling. In succession of the development of this engine a number of novel algorithms for distance calculation and intersection volume were designed and imple- mented, which are presented in this work. They are highly specialized to pro- vide fast responses for cuboids and triangles as input geometry whereas the concepts they are based on can easily be extended to other convex shapes. Especially noteworthy in this context is our ε-distance algorithm - a novel application that is not only very robust and fast but also compact in its im- plementation. Several state-of-the-art third party implementations are being presented and we show that our implementations beat them in runtime and robustness. The packing algorithm that lies on top of the physics engine is a Monte Carlo based approach implemented for packing cuboids into a container described by a triangle soup. We give an implementation for the SAE J1100 variant of the trunk packing problem. We compare this implementation to several established approaches and we show that it gives better results in faster time than these existing implementations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Das Basisproblem von Arc-Routing Problemen mit mehreren Fahrzeugen ist das Capacitated Arc-Routing Problem (CARP). Praktische Anwendungen des CARP sind z.B. in den Bereichen Müllabfuhr und Briefzustellung zu finden. Das Ziel ist es, einen kostenminimalen Tourenplan zu berechnen, bei dem alle erforderlichen Kanten bedient werden und gleichzeitig die Fahrzeugkapazität eingehalten wird. In der vorliegenden Arbeit wird ein Cut-First Branch-and-Price Second Verfahren entwickelt. In der ersten Phase werden Schnittebenen generiert, die dem Master Problem in der zweiten Phase hinzugefügt werden. Das Subproblem ist ein kürzeste Wege Problem mit Ressourcen und wird gelöst um neue Spalten für das Master Problem zu liefern. Ganzzahlige CARP Lösungen werden durch ein neues hierarchisches Branching-Schema garantiert. Umfassende Rechenstudien zeigen die Effektivität dieses Algorithmus. Kombinierte Standort- und Arc-Routing Probleme ermöglichen eine realistischere Modellierung von Zustellvarianten bei der Briefzustellung. In dieser Arbeit werden jeweils zwei mathematische Modelle für Park and Loop und Park and Loop with Curbline vorgestellt. Die Modelle für das jeweilige Problem unterscheiden sich darin, wie zulässige Transfer Routen modelliert werden. Während der erste Modelltyp Subtour-Eliminationsbedingungen verwendet, werden bei dem zweiten Modelltyp Flussvariablen und Flusserhaltungsbedingungen eingesetzt. Die Rechenstudie zeigt, dass ein MIP-Solver den zweiten Modelltyp oft in kürzerer Rechenzeit lösen kann oder bei Erreichen des Zeitlimits bessere Zielfunktionswerte liefert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this thesis is to contribute to the development of new, exact solution approaches to different combinatorial optimization problems. In particular, we derive dedicated algorithms for a special class of Traveling Tournament Problems (TTPs), the Dial-A-Ride Problem (DARP), and the Vehicle Routing Problem with Time Windows and Temporal Synchronized Pickup and Delivery (VRPTWTSPD). Furthermore, we extend the concept of using dual-optimal inequalities for stabilized Column Generation (CG) and detail its application to improved CG algorithms for the cutting stock problem, the bin packing problem, the vertex coloring problem, and the bin packing problem with conflicts. In all approaches, we make use of some knowledge about the structure of the problem at hand to individualize and enhance existing algorithms. Specifically, we utilize knowledge about the input data (TTP), problem-specific constraints (DARP and VRPTWTSPD), and the dual solution space (stabilized CG). Extensive computational results proving the usefulness of the proposed methods are reported.