3 resultados para CURVE SINGULARITIES
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Sandwich-Singularitäten sind die Singularitäten auf derNormalisierung von Aufblasungen eines regulärenFlächenkeimes. In der Arbeit wird ein enger Zusammenhangzwischen Topologie und Deformationstheorie vonSandwich-Singularitäten einerseits und ebenenKurvensingularitäten andererseits dargestellt. NeueErgebnisse betreffen u.a. Deformationen vonnulldimensionalen komplexen Räumen in der Ebene, die durchvollständige Ideale beschrieben werden, z.B. wann'simultanes Aufblasen' der Fasern einer solchen Deformationmöglich ist. Zudem werden Glättungskomponenten und dieKollar-Vermutung für Sandwich-Singularitäten untersucht undim Zusammenhang damit numerische Kriterien für die Frage, obdie symbolische Algebra einer Raumkurve endlich erzeugt ist.
Resumo:
1. Teil: Bekannte Konstruktionen. Die vorliegende Arbeit gibt zunächst einen ausführlichen Überblick über die bisherigen Entwicklungen auf dem klassischen Gebiet der Hyperflächen mit vielen Singularitäten. Die maximale Anzahl mu^n(d) von Singularitäten auf einer Hyperfläche vom Grad d im P^n(C) ist nur in sehr wenigen Fällen bekannt, im P^3(C) beispielsweise nur für d<=6. Abgesehen von solchen Ausnahmen existieren nur obere und untere Schranken. 2. Teil: Neue Konstruktionen. Für kleine Grade d ist es oft möglich, bessere Resultate zu erhalten als jene, die durch allgemeine Schranken gegeben sind. In dieser Arbeit beschreiben wir einige algorithmische Ansätze hierfür, von denen einer Computer Algebra in Charakteristik 0 benutzt. Unsere anderen algorithmischen Methoden basieren auf einer Suche über endlichen Körpern. Das Liften der so experimentell gefundenen Hyperflächen durch Ausnutzung ihrer Geometrie oder Arithmetik liefert beispielsweise eine Fläche vom Grad 7 mit $99$ reellen gewöhnlichen Doppelpunkten und eine Fläche vom Grad 9 mit 226 gewöhnlichen Doppelpunkten. Diese Konstruktionen liefern die ersten unteren Schranken für mu^3(d) für ungeraden Grad d>5, die die allgemeine Schranke übertreffen. Unser Algorithmus hat außerdem das Potential, auf viele weitere Probleme der algebraischen Geometrie angewendet zu werden. Neben diesen algorithmischen Methoden beschreiben wir eine Konstruktion von Hyperflächen vom Grad d im P^n mit vielen A_j-Singularitäten, j>=2. Diese Beispiele, deren Existenz wir mit Hilfe der Theorie der Dessins d'Enfants beweisen, übertreffen die bekannten unteren Schranken in den meisten Fällen und ergeben insbesondere neue asymptotische untere Schranken für j>=2, n>=3. 3. Teil: Visualisierung. Wir beschließen unsere Arbeit mit einer Anwendung unserer neuen Visualisierungs-Software surfex, die die Stärken mehrerer existierender Programme bündelt, auf die Konstruktion affiner Gleichungen aller 45 topologischen Typen reeller kubischer Flächen.
Resumo:
This thesis provides efficient and robust algorithms for the computation of the intersection curve between a torus and a simple surface (e.g. a plane, a natural quadric or another torus), based on algebraic and numeric methods. The algebraic part includes the classification of the topological type of the intersection curve and the detection of degenerate situations like embedded conic sections and singularities. Moreover, reference points for each connected intersection curve component are determined. The required computations are realised efficiently by solving quartic polynomials at most and exactly by using exact arithmetic. The numeric part includes algorithms for the tracing of each intersection curve component, starting from the previously computed reference points. Using interval arithmetic, accidental incorrectness like jumping between branches or the skipping of parts are prevented. Furthermore, the environments of singularities are correctly treated. Our algorithms are complete in the sense that any kind of input can be handled including degenerate and singular configurations. They are verified, since the results are topologically correct and approximate the real intersection curve up to any arbitrary given error bound. The algorithms are robust, since no human intervention is required and they are efficient in the way that the treatment of algebraic equations of high degree is avoided.