1 resultado para CLEAVAGE

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within this thesis, new approaches for the concepts of peptide-polymer conjugates and peptide-based hybrid nanomaterials are investigated. In the first part, the synthesis of a triblock polymer-peptide-polymer is carried out following a typical peptide coupling reaction, both in solution and on solid-phase. The peptide sequence is chosen, so that it is cleaved by an enzyme preparation of trypsin. End-functionalized polystyrene is used as a model hydrophobic polymer and coupled to the peptide sequence. The results show successful coupling reactions in both methods, while the solid phase method produced a more defined product. Suspensions, consisting of peptide-polymer conjugates particles, are prepared in water by ultrasonication. In contact with the enzyme, the peptide constituting the conjugated particles is cleaved. This demonstrates the enzymatic cleavage in heterophase of enzymatic sequence bond to hydrophobic polymers, and is of great interest for the encapsulation and delivery of hydrophobic molecules.rnA second approach is the preparation of peptide-based hybrid nanocapsules. This is achieved by interfacial polyaddition in inverse miniemulsion with the peptide sequence functionalized with additional amino acids. A method suitable to the use of a peptide sequence for interfacial polyaddition was developed. It is shown that, the polarity of the dispersed phase influences the structures prepared, from particle-like to polymeric shell with a liquid core.rnThe peptide sequence is equipped with a FRET pair (more exactly, an internally-quenched fluorescent system) which allows the real-time monitoring of the enzymatic cleavage of the recognition site. This system shows the successful cleavage of the peptide-based nanocapsules when trypsin preparation is added to the suspensions. A water-soluble fluorescent polymer is efficiently entrapped and its possible use as marker for the capsules is highlighted. Furthermore, a small water-soluble fluorescent dye (SR-101) is successfully encapsulated and the encapsulation efficiency as a function of the functionality of the peptide and the amount of comonomer equivalent (toluene diisocyanate) is studied. The dye is encapsulated at such a high concentration, that self-quenching occurs. Thus, the release of the encapsulated dye triggered by the enzymatic cleavage of the peptide results in a fluorescence recovery of the dye. The fluorescence recovery of the FRET pair in the peptide and of the encapsulated dye correlate well.rnFinally, nanocapsules based on a hepsin-cleavable peptide sequence are prepared. Hepsin is an enzyme, which is highly upregulated in prostate cancer cells. The cleavage of the nanocapsules is investigated with healthy and “cancerous” (hepsin-expressing) cell cultures. The degradation, followed via fluorescence recovery of the FRET system, is faster for the suspensions introduced in the hepsin expressing cell cultures.rnIn summary, this work tackles the domain of responsive nanomaterials for drug delivery from a new perspective. It presents the adaptation of the miniemulsion process for hybrid peptide-based materials, and their successful use in preparing specific enzyme-responsive nanoparticles, with hydrophilic payload release properties.rn