8 resultados para Brains.
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
ZUSAMMENFASSUNGIn den Gehirnen von Alzheimer-Patienten werden beta-Amyloid-Plaques gefunden, deren Hauptbestandteile die neurotoxischen beta-Amyloid-Peptide (A-beta) sind. Im Verlauf des nicht-amyloidogenen Wegs wird das Amyloid-Vorläuferproteins (APP) innerhalb der A-beta-Sequenz durch die alpha-Sekretase prozessiert, wobei das neuroprotektive APPs-alpha freigesetzt und die Entstehung der A-beta-Peptide verhindert wird. Die Aktivitätserhöhung der alpha-Sekretase ADAM10 könnte eine übermäßige Produktion der A-beta-Peptide abwenden.Zum Auffinden ADAM10-stimulierender Substanzen konnte ein Testsystem entwickelt werden, das auf der Fusion der 119 C-terminalen Aminosäurereste des Amyloid-Vorläuferproteins mit einem Reporterprotein beruht. Durch seine alkalische Phosphataseaktivität kann dieses Reporterprotein stellvertretend für das freigesetzte endogene APPs-alpha photometrisch im Zellkulturüberstand quantifiziert werden. Substanzen, die aktivierend auf die alpha-Sekretase ADAM10 wirken, können somit schnell und mit einer hohen Empfindlichkeit ermittelt werden.Die alpha-Sekretasen ADAM10 und TACE werden als inaktive Zymogene synthetisiert und besitzen eine Proprotein-Konvertasen-Erkennungssequenz zwischen der Prodomäne und der Metalloproteinase-Domäne. In dieser Arbeit konnte nachgewiesen werden, dass Proprotein-Konvertasen an der Prozessierung beider Zymogene beteiligt sind. ADAM10 und TACE wurden durch die Überexpression der Proprotein-Konvertasen PC7 und Furin in HEK293-Zellen in größerem Umfang prozessiert. Dies resultierte in einer erhöhten katalytischen Aktivität. Mutiertes ADAM10 ohne Proprotein-Konvertasen-Spaltstelle konnte nicht mehr in die katalytisch aktive Form überführt werden. Diese Ergebnisse eröffnen neue Ansätze zur Stimulierung des nicht-amyloidogenen Wegs.
Resumo:
Die im Laufe der Evolution konservierte Genfamilie des Amyloid-Vorläufer-Proteins APP beinhaltet sowohl bei der Maus als auch beim Menschen die beiden APP-ähnlichen ProteineAPLP1 und APLP2. Ziel dieser Arbeit war es, die proteolytische Prozessierung des APLP2 zu charakterisieren und die beteiligten Proteasen aufzuzeigen. Ausgehend von Stimulations- und Inhibitionsversuchen wurde die Metzincin-Familie der Metalloproteinasen als APLP2-Proteasen identifiziert. Durch Überexpression von ADAM10 und TACE (ADAM17) konnten zwei wichtige Prozessierungs-Enzyme des APLP2 charakterisiert werden. Damit wurde zum ersten Mal eine α-Sekretase-ähnliche Enzymaktivität analog zu der Spaltung des APP an APLP2 beschrieben. Untersuchungen an ADAM10-transgenen Mäusen bestätigten die proteolytische Prozessierung des APLP2 in vivo. Durch die Untersuchung neuronaler Differenzierung mit Retinsäure und Apoptose in Neuroblastoma-Zellen gelang der Nachweis einer funktionellen Koregulation von APLP2 und seiner Protease ADAM10, die zu einer erhöhten Freisetzung des neurotrophen löslichen APLP2 bei der Differenzierung und zu einer Reduktion bei Apoptose führt. In den Gehirnen von Alzheimer-Patienten gibt es sowohl Hinweise auf einen gestörten Vitamin A Metabolismus als auch auf verstärkte apoptotische Vorgänge, so dass hier erstmalig eine Verknüpfung der APLP2-Proteolyse mit zwei pathogenen Prozessen des Morbus Alzheimergezeigt werden konnten. Eine therapeutische Aktivierung der α-Sekretasen hätte die verstärkte Bildung von neurotrophem APPsα und APLP2s zur Folge. Es bestünde jedoch gleichzeitig die Gefahr von Nebenwirkungen durch die Spaltung weiterer Substrate wie der Notch-Rezeptoren oder des Prionenproteins. In dieser Arbeit konnte gezeigt werden, dass Notch-1 prinzipiell ein Substrat für ADAM10 darstellt, die Auswirkungen in vivo jedoch begrenzt und altersabhängig sind. Für das Prionenprotein ergab sich keine direkte Beeinflussung durch eine Spaltung, sondern vielmehr eine Expressionsminderung durch die Überexpression von ADAM10 in Mäusen. Die Inkubationszeit bei der Prionenerkrankung hängt von der Menge des endogenen zellulären Prionenproteins ab. Daher ergibt sich aus einer Steigerung der α-Sekretase-Aktivität eine potentielle Prävention gegenüber einer Infektion mit der pathogenen Scrapie-Form des Prionenproteins.
Resumo:
During central nervous system myelination, oligodendrocytes extend membrane processes towards an axonal contact site which is followed by ensheathment resulting in a compacted multilamellar myelin sheath. The formation of this axon-glial unit facilitates rapid saltatory propagation of action potentials along the axon and requires the synthesis and transport of copious amounts of lipids and proteins to the axon-glial contact site. Fyn is a member of the Src family of non receptor tyrosine kinases and inserted into the inner leaflet of the oligodendrocyte membrane by acylation. Fyn activity plays a pivotal role in the maturation of oligodendrocytes and the myelination process. It was suggested previously that Fyn kinase can be stimulated by binding of a neuronal ligand to oligodendroglial F3/ contactin, a glycosyl-phosphatidyl-inositol anchored immunoglobulin superfamily (IgSF) member protein. It could be shown here, that neuronal cell adhesion molecule L1 binds to oligodendrocytes in an F3-dependent manner and activates glial Fyn. In the search for downstream participants of this novel axon-glial signalling cascade, heterogeneous nuclear ribonucleoprotein (hnRNP) A2 was identified as a novel Fyn target in oligodendrocytes. HnRNP A2 was known to be involved in the localisation of translationally repressed myelin basic protein (MBP) mRNA by binding to a cis acting A2 response element (A2RE) present in the 3’ untranslated region. Transport of MBP mRNAs occurs in RNA-protein complexes termed RNA granules and translational repression during transport is achieved by hnRNP A2-mediated recruitment of hnRNP E1 to the granules. It could be shown here, that Fyn activity leads to enhanced translation of reporter mRNA containing a part of the 3’ UTR of MBP including the A2RE. Furthermore hnRNP E1 seems to dissociate from RNA granules in response to Fyn activity and L1 binding. These findings suggest a novel form of neuron- glial communication: Axonal L1 binding to oligodendroglial F3 activates Fyn kinase. Activated Fyn phosphorylates hnRNP A2 leading to removal of hnRNP E1 from RNA granules initiating the translation of MBP mRNA. MBP is the second most abundant myelin protein and mice lacking this protein show a severe hypomyelination phenotype. Moreover, the brains of Fyn knock out mice contain reduced MBP levels and are hypomyelinated. Hence, L1-mediated MBP synthesis via Fyn as a central molecule could be part of a regulatory mechanism required for myelinogenesis in the central nervous system.
Resumo:
Das Glaukom ist eine der führenden Erblindungsursachen weltweit. Trotzdem ist die Pathogenese, die zur Degeneration der retinalen Ganglienzellen führt, bisher nicht verstanden. In den letzten Jahren ergaben sich verschiedene Hinweise auf die Beteiligung einer immunologischen Komponente. Thema dieser Arbeit waren elektrophysiologische Untersuchungen, im Sinne von visuell evozierten Potentialen, am Tiermodell des Experimentellen Autoimmun Glaukoms und die Etablierung dieses Modells. Das Modell basiert auf einer Immunisierung von Lewisratten mit Pertussistoxin, inkompletten Freunds Adjuvant und potentiellen Antigenen, die zu einer Immunreaktion und einem Verlust von retinalen Ganglienzellen führen sollen. Zur Etablierung des Experimentellen Autoimmun Glaukom Modells wurde eine fünfwöchige Studie mit vier Gruppen durchgeführt. Als Antigene wurden Glia fibrilläres saures Protein (n= 10) und Myelin basisches Protein (n=10) verwendet, die beide in Studien zu Serum- und Kammerwasseranalysen bei Glaukompatienten eine Abweichung zur Kontrollgruppe gezeigt hatten. Außerdem wurde eine Gruppe mit selbst hergestelltem Sehnerv-Homogenat (n=12) immunisiert. Eine Gruppe erhielt keine Immunisierung und diente als Kontrolle (n=10). Zur Überprüfung der Effekte des Modells dienten verschiedene Untersuchungsmethoden, wie die Augeninnendruckmessung und die Untersuchung der Fundi. Des Weiteren wurden transiente und stationäre visuell evozierte Potentiale abgeleitet und die Latenzen, Amplituden und die Marker S (Steigung) und TR (Temporale Antworten) verglichen. Außerdem erfolgte nach Tötung der Tiere die Entnahme der Gehirne und Augen. Die Gehirne wurden nach Paraffineinbettung geschnitten, mit Luxol Fast Blue und Kresylviolett gefärbt und hinsichtlich etwaiger Entmarkungsherde oder anderer Pathologien unter dem Mikroskop bewertet. Der Verlauf des intraokulären Drucks zeigte sowohl zwischen den Gruppen als auch zwischen den verschiedenen Zeitpunkten keine signifikanten Unterschiede. Er bewegte sich im physiologischen Bereich mit durchschnittlich circa 12 mmHg. Die Funduskopien lieferten zu keinem Zeitpunkt krankhafte Veränderungen. Auch die visuell evozierten Potentiale lieferten zwischen den Gruppen keine signifikanten Unterschiede, sondern belegten normale visuelle Funktion bei allen Tieren. Die Auswertung der histologischen Untersuchung der Hirnschnitte zeigte keine Entmarkungsherde. Die erzielten Ergebnisse dieser Arbeit legen nahe, dass der retinale Ganglienzellverlust beim Experimentellen Autoimmun Glaukom Modell ohne eine Augeninnendruckerhöhung stattfindet. Die Fundusuntersuchung und die visuell evozierten Potentiale, wie in diesem Versuchsaufbau durchgeführt, scheinen nicht sensibel genug zu sein, diese Verluste nachzuweisen. In weiteren Arbeiten sollten andere Methoden zum Nachweis der retinalen Ganglienzellverluste erprobt werden. Neben elektrophysiologischen Methoden bieten sich für das weitere Vorgehen besonders immunhistologische Methoden an. Außerdem sollten die Mechanismen erforscht werden durch die es nach der Immunisierung zur Apoptose von retinalen Ganglienzellen kommt und welche Antikörper dazuführen können. Des Weiteren ist von Interesse, ob und wie eine zelluläre Komponente an der Pathogenese des Experimentellen Autoimmun Glaukoms beteiligt ist.
Resumo:
Die vorliegende Dissertation beinhaltet Untersuchungen zur Expression und Funktion der respiratorischen Proteine Neuroglobin (Nbg) und Cytoglobin (Cygb) in Vertebraten. rnrnUm die Expression der Globine während der Entwicklung des Säugerhirns zu untersuchen, wurden die Hirne von Maus-Embryonen ab dem Fötalstadium MF10 bis zum Tag eins nach der Geburt (T1) mit Adulttieren verglichen. Quantifiziert wurde sowohl die mRNA- als auch die Protein-Expression. Beide Globine zeigten im Verlauf der Entwicklung einen stetigen Anstieg der mRNA-Expression, wobei Ngb zu Beginn in zehnfach höherer Konzentration vorlag und im zeitlichen Verlauf einen 130-fachen Anstieg zeigte. Cygb zeigte lediglich einen 16-fachen Anstieg bis zum Adultstadium. Auf Proteinebene konnte die Expressionszunahme beider Globine im Laufe der Entwicklung bestätigt werden. Weder in den hypoxieresistenten Frühembryonalstadien noch während der mit Sauerstoff-Stress verbundenen Geburt zeigte sich ein Expressionsmaximum. Dies spricht gegen eine Globin-Funktion in der Oxidanz-Abwehr. Eher ist zumindest Ngb mit der Reifung der Neurone und dem damit einhergehenden, gesteigerten oxidativen Stoffwechsel assoziiert.rnrnDes Weiteren sollte die zelluläre und intrazelluläre Lokalisation beider Globine anhand einer primären Zellkultur aus dem Hippocampus pränataler Ratten und in immortalen Zelllinien untersucht werden. Neuroglobin wurde dabei nur in Neuronen, nicht jedoch in Gliazellen nachgewiesen. Das Färbemuster war in allen Ngb-exprimierenden Zellen zytoplasmatisch. Cytoglobin wurde in der Primärkultur in den Neuronen jedoch ebenso in den mit anti-GFAP markierten Gliazellen beobachtet. In beiden Zellpopulationen war auch der Kern durch das CyGB-Antiserum markiert. rnEine genauere Untersuchung der intrazellulären Lokalisation sollte durch die Transfektion von Globin-pEGFP-Fusionsproteinen erfolgen. Nach Transfektion der Fusionskonstrukte wurde die GFP-Färbung bei beiden Globinen sowohl im Zytoplasma als auch im Kern beobachtet. Eine rein nukleäre Lokalisation, die insbesondere für Cygb von anderen Autoren postuliert wurde, konnte somit ausgeschlossen werden. rnrnIn primären Zellkulturen aus Cerebellum und Kortex, die mit Hilfe von Paraquat oxidativem Stress ausgesetzt wurden, wurde der Verlauf der Globin-mRNA-Expression mit dem unregulierten 18s rRNA-Referenzgen und mit den Antioxidanz-Enzymen Cu-Zn-SOD und Gpx verglichen. Neuroglobin zeigte einen Expressionsverlauf ähnlich dem der beiden Antioxidanz-Enzyme, jedoch liegt seine mRNA im Hirngewebe in hundertfach niedrigerer Menge als Cu-Zn-SOD und Gpx vor. Cytoglobin zeigte keine Veränderung der Expression. Eine Funktion der Globine im Sinne einer ROS-Abwehr kann aus den Befunden nicht abgeleitet werden. rnrnUntersuchungen von Tumor und Normalgewebe mittels eines cDNA-Cancer-Arrays zeigten, dass NGB in Tumoren verschiedenen Ursprungs nicht exprimiert wird, CyGB dagegen keine Änderung seiner Expression in Tumor versus Normalgewebe erfährt. Eine Induktion der beiden Globine z.B. durch Hypoxie in soliden Tumoren kann daher ausgeschlossen werden.rn
Resumo:
Hypothermie schützt Neurone vor hypoxischen, ischämischen und traumatischen Schädigungen. Bisher ist jedoch unklar, ob Hypothermie auch endogene Reparaturmechanismen beeinflusst. Die vorliegende Arbeit untersucht daher den Einfluss intraischämischer Hypothermie auf das neuroregenerative Potential des Gehirns nach zerebraler Ischämie.rn50 männliche Sprague-Dawley Ratten wurden hierzu anästhesiert, intubiert und in folgende Versuchsgruppen randomisiert: Normotherme Ischämie (Normo/BACO), intraischämische Hypothermie (Hypo/BACO) sowie korrespondierende scheinoperierte Kontrollgruppen (Normo/Sham und Hypo/Sham). In den Gruppen Normo/Sham und Normo/BACO wurde die perikranielle Temperatur konstant bei 37 °C gehalten während sie in den Gruppen Hypo/Sham und Hypo/BACO für 85 min auf 33 °C gesenkt wurde. Durch bilaterale Okklusion der Aa. carotides communes in Kombination mit hämorrhagischer Hypotension wurde in BACO-Tieren eine 14-minütige inkomplette globale zerebrale Ischämie induziert. Tiere der Kontroll-Gruppen (Sham) blieben ohne Induktion einer Ischämie in Narkose. 15 weitere Tiere durchliefen nicht den operativen Versuchsteil und bildeten die Nativ-Gruppe, die als Referenz für die natürliche Neurogenese diente. Zur in-vivo-Markierung der Stammzellen wurde vom ersten bis siebten postoperativen Tag Bromodeoxyurindine (BrdU) injiziert. Nach 28 Tagen wurden die Gehirne entnommen. Die Analyse des histopathologischen Schadens erfolgte anhand HE-gefärbter Hirnschnitte, die Quantifikation der absoluten Anzahl neu gebildeter Zellen im Gyrus dentatus erfolgte mittels BrdU-Färbung. Anhand einer BrdU/NeuN-Immunfluoreszenz-Doppelfärbung konnte der Anteil neu generierter Neurone bestimmt werden.rnNach zerebraler Ischämie zeigten Tiere mit Normothermie eine Schädigung der CA 1-Region von über 50 % während hypotherme Ischämietiere einen Schaden von weniger als 10 % aufwiesen. Tiere ohne Ischämie (Hypo/Sham, Normo/Sham, Nativ) zeigten keinen histopathologischen Schaden. Die Anzahl neu gebildeter Neurone im Gyrus dentatus lag für normotherme Ischämietiere (Normo/BACO) bei 18819 und für Tiere mit intraischämischer Hypothermie (Hypo/BACO) bei 15175 neuen Neuronen. In den Kontroll-Gruppen wiesen Tiere der Gruppe Normo/Sham 5501, Tiere der Gruppe Hypo/Sham 4600 und Tiere der Nativ-Gruppe 5974 neu generierte Neurone auf.rnDiese Daten bestätigen frühere Studien, die eine Reduktion des neuronalen Schadens durch intraischämische Hypothermie zeigten. Infolge des ischämischen Stimulus kam es im Vergleich zu beiden Kontroll- und der Nativ-Gruppe zu einem signifikanten Anstieg der Anzahl neuer Neurone in beiden Ischämiegruppen unabhängig von der Temperatur. Somit scheint das Ausmaß der histopathologischen Schädigung keinen Einfluss auf die Anzahl neu gebildeter Neurone zu haben. Darüber hinaus beeinflusste die therapeutische Hypothermie auch nicht die natürliche Neurogeneserate. Die erhobenen Daten lassen vermuten, dass Hypothermie keinen Effekt auf die Anzahl und Differenzierung neuronaler Stammzellen aufweist, unabhängig davon, ob eine zerebrale Schädigung vorliegt.
Resumo:
In dieser Studie wurde anhand des Modells der Ratte das Gleichgewichtssystem auf cerebro-corticaler Ebene untersucht, und das Verhalten des Gehirns nach akuten sowie chronischen Ausfällen mit funktioneller Bildgebung untersucht. rnMit der Positronen-Emissions-Tomographie (PET) kann die Metabolismusrate bestimmter Gehirnareale gemessen werden. Narkotisierte Tiere wurden unter galvanischer vestibulärer Stimulation im PET gemessen und die Ergebnisse wurden mit Kontrollstimulations-Messungen verglichen. Es konnten verschiedene Areale, die eine erhöhte Stoffwechselaktivität aufwiesen, ermittelt werden. Dazu gehören der somatosensorische und der insuläre Cortex, Teile des auditorischen Cortexes, der anteriore cinguläre sowie der entorhinale Cortex. Subcorticale Strukturen wie der Hippocampus, die Amygdala sowie die latero-dorsalen thalamischen Kerne wiesen ebenfalls erhöhten Stoffwechsel unter vestibulärer Stimulation auf. rnBei dieser PET-Studie handelt es sich um die erste funktionell-bildgebende Studie, die Verarbeitung vestibulärer Informationen bei Ratten in vivo darstellt. Die anatomische Verbindung der gefundenen Areale wurde mit anterograden und retrograden neuronalen Tracings unterstützt. rnDarüber hinaus wurde markiertes Gewebe, welches die Verbindung zwischen thalamischen und cerebro-corticalen Kernen der vestibulären Verschaltung aufweist, immunhistochemisch auf dessen Neurotransmission hin untersucht. Das katecholaminergen und dem opioidergen System wurde untersucht. Eine Beteiligung katecholaminerger Transmitter konnte nicht nachgewiesen werden. Neurone im somatosensorischen Cortex, die positiv auf einen Opioid-Rezeptor-Antikörper getestet wurden erhalten anterograd markierte Terminale aus dem thalamischen Kern LDDM, der mittels der PET als vestibulär identifiziert werden konnte. rnBasierend auf den Ergebnissen der ersten bildgebenden Studie wurde in einer zweiten funktionell-bildgebenden Studie die zentral-vestibuläre Verschaltung unterbrochen, indem relevante thalamische Kerngebiete (LDDM, LDVL) elektrolytisch zerstört wurden. Die Stoffwechselaktivität wurde anschließend bei diesen Tieren an verschiedenen Zeitpunkten nach der Läsion im PET unter vestibulärer Stimulation gemessen. Die Stoffwechselaktivität dieser Tiere wurde mit der Stoffwechselaktivität von Kontroll-Tieren verglichen. rnBei dieser Studie wurde zum ersten Mal, mittels funktioneller Bildgebung gezeigt, welche Bereiche des Gehirns nach akuter und chronischer Läsion des vestibulären Systems an Kompensationsmechanismen beteiligt sind. Alle Gehirnareale, die in verschiedenen Zeitfenstern (1, 3, 7 und 20 Tage nach Läsion) erhöhten Metabolismus aufweisen, sind Teil der vestibulären Verschaltung. Es handelt sich dabei um Areale der Okulomotorik und des räumlichen Gedächtnisses: das Postsubiculum, den Colliculus superior, das mediale Corpus geniculatum, den entorhinalen Cortex sowie die Zona incerta.rn
Resumo:
In der vorliegenden Arbeit wurden zwei Strukturmutationslinien von Drosophila melanogaster, grf und ebo, hinsichtlich ihres Lauf- und Orientierungsverhaltens im Buridanschen sowie im Detour-Paradigma untersucht. Als Kernthema der Arbeit entwickelte sich rasch die molekulare Analyse von ebo in Bezug auf das räumliche Orientierungsgedächtnis, da ebo-mutante Fliegen Letzteres nicht zeigen. Durch Wiederherstellen der EBO-Funktion kann der Verhaltensphänotyp der ebo-Mutante in jeder Ringneuronengruppe des Ellipsoidkörpers gerettet werden, jedoch nicht der Strukturdefekt. Zudem wird zur Ausbildung des Orientierungsgedächtnisses EBO nicht während der Entwicklung, sondern akut benötigt. Aufgrund der Tatsache, dass ebo für das nukleäre Protein Exportin6 codiert, und selbiges für den Export von Aktin-Profilin-Komplexen aus dem Zellkern verantwortlich ist (STÜVEN ET AL., 2003), zeigen ebo-Tiere nukleäre Aktin-Akkumulationen sowohl während der Entwicklung in Speicheldrüsen als auch im adulten Gehirn, was mittels Expression eines Actin::GFP-Fusionsproteins gezeigt wurde. Die genetischen Interaktionsexperimente zeigen, dass der anatomische Defekt von ebo durch eine reduzierte Aktin-Polymerisation erfolgt, für den Verhaltensphänotyp jedoch die Aktin-Anreicherung in den Zellkernen von Ringneuronen des Ellipsoidkörpers ursächlich ist. Die erstaunliche Redundanz der Ringneurone in Bezug auf die Rettung des Verhaltensphänotyps legt nahe, dass diffusible Faktoren eine wichtige Rolle für die Ausbildung eines Orientierungsgedächtnisses spielen. Bezüglich dieser Hypothese konnte nachgeweisen werden, dass durch FMRFamid-RNAi in R2- und R4-Ringneuronen des Ellipsoidkörpers das Orientierungsgedächtnis zerstört wird. Eine daraufhin durchgeführte Antikörperfärbung gegen pro-FMRFa in wildtypischen und ebo-mutanten Gehirnen ergab jedoch keine Verschiedenheit die Menge oder Lokalisation betreffend. Die bei ebo vorhandene Anreicherung von Aktin im Zellkern bewirkt, dass die Aktin-Monomere im Nucleus an den Cofaktor dMRTF (Mrtf) binden und diesen somit inaktivieren. Dadurch kann der Transkriptionsfaktor dSRF (bs) nicht mehr durch dMRTF aktiviert werden, was den Orientierungsgedächtnis-Verlust bewirkt. Da es jedoch unwahrscheinlich ist, dass ein Gedächtnis, welches nur wenige Sekunden andauert, von Transkriptionsregulation abhängt, könnte dSRF auch die Genexpression von Molekülen, die schnelle Veränderungen synaptischer Transmission der Ringneurone vermitteln, modulieren. Für die Zukunft wäre es demnach von enormer Bedeutung, weitere Zielgene von dSRF aufzuklären und zu analysieren.