3 resultados para Brain function

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The submitted work concentrated on the study of mRNA expression of two distinct GABA transporters, GAT-1 and GAT-3, in the rat brain. For the detection and quantification of the chosen mRNAs, appropriate methods had to be established. Two methods, ribonuclease protection assay (RPA) and competitive RT-PCR were emloyed in the present study. Competitive RT-PCR worked out to be 20 times more sensitive as RPA. Unlike the sensitivity, the fidelity of both techniques was comparable with respect to their intra- and inter-assay variability.The basal mRNA levels of GAT-1 and GAT-3 were measured in various brain regions. Messenger RNAs for both transporters were detected in all tested brain regions. Depending on the region, the observed mRNA level for GAT-1 was 100-300 higher than for GAT-3. The GAT-1 mRNA levels were similar in all tested regions. The distribution of GAT-3 mRNA seemed to be more region specific. The strongest GAT-3 mRNA expression was detected in striatum, medulla oblongata and thalamus. The lowest levels of GAT-3 were in cortex frontalis and cerebellum.Furthermore, the mRNA expression for GAT-1 and GAT-3 was analysed under altered physiological conditions; in kindling model of epilepsy and also after long-term treatment drugs modulating GABAergic transmission. In kindling model of epilepsy, altered GABA transporter function was hypothesised by During and coworkers (During et al., 1995) after observed decrease in binding of nipecotic acid, a GAT ligand, in hippocampus of kindled animals. In the present work, the mRNA levels were measured in hippocampus and whole brain samples. Neither GAT-1 nor GAT-3 showed altered transcription in any tested region of kindled animals compared to controls. This leads to conclusion that an altered functionality of GABA transporters is involved in epilepsy rather than a change in their expression.The levels of GAT-1 and GAT-3 mRNAs were also measured in the brain of rats chronically treated with diazepam or zolpidem, GABAA receptor agonists. Prior to the molecular biology tests, behavioural analysis was carried out with chronically and acutely treated animals. In two tests, open field and elevated plus-maze, the basal activity exploration and anxiety-like behaviour were analysed. Zolpidem treatment increased exploratory activity. There were observed no differencies between chronically and acutely treated animals. Diazepam increased exploratory activity and decresed anxiety-like behaviour when applied acutely. This effect disappeard after chronic administration of diazepam. The loss of effect suggested a development of tolerance to effects of diazepam following long-term administration. Double treatment, acute injection of diazepam after chronic diazepam treatment, confirmed development of a tolerance to effects of diazepam. Also, the mRNAs for GAT-1 and GAT-3 were analysed in cortex frontalis, hippocampus, cerebellum and whole brain samples of chronically treated animals. The mRNA levels for any of tested GABA transporters did not show significant changes in any of tested region neither after diazepam nor zolpidem treatment. Therefore, changes in GAT-1 and GAT-3 transcription are probably not involved in adaptation of GABAergic system to long-term benzodiazepine administration and so in development of tolerance to benzodiazepines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyses of low density lipoprotein receptor-related protein 1 (LRP1) mutant mouse embryonic fibroblasts (MEFs) generated from LRP1 knock-in mice revealed that inefficient maturation and premature proteasomal degradation of immature LRP1 is causing early embryonic lethality in NPxY1 and NPxY1+2 mutant mice. In MEFs, NPxY2 mutant LRP1 showed efficient maturation but, as expected, decreased endocytosis. The single proximal NPxY1 and the double mutant NPxY1+2 were unable to reach the cell surface as an endocytic receptor due to premature degradation. In conclusion, the proximal NPxY1 motif is essential for early sorting steps in the biosynthesis of mature LRP1.rnThe viable NPxY2 mouse was used to provide genetic evidence for LRP1-mediated amyloid-β (Aβ) transport across the blood-brain barrier (BBB). Here, we show that primary mouse brain capillary endothelial cells (pMBCECs) express functionally active LRP1. Moreover, demonstrate that LRP1 mediates [125I]-Aβ1-40 transcytosis across pMBCECs in both directions, whereas no role for LRP1-mediated Aβ degradation was detected. Aβ transport across pMBCECs generated from NPxY2 knock-in mice revealed a reduced Aβ clearance in both directions compared to WT derived pMBCECs. Finally, we conclude that LRP1 is a bona-fide receptor involved in bidirectional transcytosis of Aβ across the BBB.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disruption of the blood-brain barrier (BBB) results in cerebral edema formation, which is a major cause for high mortalityrnafter traumatic brain injury (TBI). As anesthetic care is mandatory in patients suffering from severe TBI it may be importantrnto elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ) such as zonularnoccludens-1 (ZO-1) and claudin-5 (cl5) play a central role for BBB stability. First, the influence of the volatile anestheticsrnsevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER) inrnmurine brain endothelial monolayers and neurovascular co-cultures of the BBB. Secondly brain edema and TJ expression ofrnZO-1 and cl5 were measured in-vivo after exposure towards volatile anesthetics in native mice and after controlled corticalrnimpact (CCI). In in-vitro endothelial monocultures, both anesthetics significantly reduced TEER within 24 hours afterrnexposure. In BBB co-cultures mimicking the neurovascular unit (NVU) volatile anesthetics had no impact on TEER. In healthyrnmice, anesthesia did not influence brain water content and TJ expression, while 24 hours after CCI brain water contentrnincreased significantly stronger with isoflurane compared to sevoflurane. In line with the brain edema data, ZO-1 expressionrnwas significantly higher in sevoflurane compared to isoflurane exposed CCI animals. Immunohistochemical analysesrnrevealed disruption of ZO-1 at the cerebrovascular level, while cl5 was less affected in the pericontusional area. The studyrndemonstrates that anesthetics influence brain edema formation after experimental TBI. This effect may be attributed tornmodulation of BBB permeability by differential TJ protein expression. Therefore, selection of anesthetics may influence thernbarrier function and introduce a strong bias in experimental research on pathophysiology of BBB dysfunction. Futurernresearch is required to investigate adverse or beneficial effects of volatile anesthetics on patients at risk for cerebral edema.