2 resultados para Boys of Color

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die vorliegende Arbeit verfolgte mehrere Ziele. Die Hauptaufgabe war es, farbsensitive und bewegungssensitive Neurone im Tectum opticum des Goldfisches zu finden und diese hinsichtlich ihres Antwortverhaltens zu charakterisieren. Aus Verhaltensversuchen ist bekannt, dass sowohl das Ganzfeldbewegungssehen als auch das Objektbewegungssehen „farbenblind“ ist, da die Verarbeitung dieser Sehleistungen jeweils nur von einem Zapfentyp getrieben wird. Es sollte untersucht werden, ob sich diese Farbenblindheit auch auf Ebene der tectalen bewegungsempfindlichen Neurone finden lässt. Schließlich sollten die Ableitorte im Tectum opticum kartiert werden, um festzustellen, ob es jeweils bestimmte örtlich abgegrenzte Areale für Farbe einerseits und für Bewegung andererseits gibt.rnDie Aktivität von tectalen Units wurde durch extrazelluläre Ableitungen registriert. Um farbspezifische Neurone zu identifizieren und zu charakterisieren, wurden 21 verschiedene Farbpapiere (HKS-Standard) aus dem gesamten Farbenkreis (ausgenommen UV) präsentiert. Auf jedes Farbpapier folgte ein neutrales Graupapier. Des Weiteren wurde eine Schwarz-Weiß-Grau-Sequenz gezeigt, um das Antwortverhalten der Units auf Helligkeitswechsel zu prüfen. Jeder Stimulus wurde für fünf Sekunden präsentiert und die gesamte Stimulussequenz wurde mindestens dreimal wiederholt. Zur Identifizierung bewegungssensitiver Neurone wurde ein sich exzentrisch bewegendes schwarz-weißes Zufallspunktmuster präsentiert. Um die „Farbenblindheit“ des Bewegungssehens zu testen, wurden zwei rot-grüne Zufallspunktmuster präsentiert, die den L-Zapfen des Goldfisches unterschiedlich stark modulierten. Den meisten Units wurden sowohl die Farb- als auch die Bewegungsstimuli gezeigt.rnEs konnten 69 Units abgeleitet werden. Von diesen antworteten 34 sowohl auf Farbstimuli als auch auf Helligkeitsreize, 19 Units reagierten ausschließlich auf Farbstimuli, 15 Units zeigten sich nur für den Bewegungsstimulus sensitiv und zwei Units beantworteten ausschließlich Helligkeitswechsel. Die farbempfindlichen Units konnten in 14 Gruppen eingeteilt werden: sechs Gruppen im Rotbereich (22 Units), fünf Gruppen im Blau-Grünbereich (21 Units), eine Gruppe im Gelbbereich (zwei Units), eine Gruppe, die alle Farbstimuli mit Erhöhung der Aktivität (sechs Units) und eine Gruppe, die alle Farbstimuli mit Erniedrigung der Aktivität (eine Unit) beantwortete. Es wurden zwei Arten von Gegenfarbzellen gefunden: Rot-ON/Blau-und-Grün-OFF (12 Units) und Rot-OFF/Blau-und-Grün-ON (sieben Units). Es wurden verschiedene zeitliche Antwortmuster gefunden. Während einige Units nur Reizwechsel beantworteten, zeigten die meisten Units ein tonisches Antwortverhalten. Manche Units beantworteten jeden Stimuluswechsel phasisch und darüber hinaus bestimmte Stimuli tonisch. Die meisten tectalen Neurone zeigten eine Grundaktivität. Alle Units, denen sowohl der Farb- als auch der Bewegungsstimulus gezeigt wurden, antworteten nur auf eine Stimulusart. rnDiese Ergebnisse lassen folgende Schlüsse zu: Die Verarbeitung von Farbe und Bewegung im Tectum opticum des Goldfischs wird über zwei unterschiedlichen Verarbeitungswegen geleistet, da alle Units entweder auf Farb- oder auf Bewegungsstimuli antworten. Das Bewegungssehen wird im Goldfisch durch nur einen Zapfentyp (M- oder L-Zapfen) vermittelt und ist somit “farbenblind”, da alle bewegungssensitiven Units die Aktivität einstellten, wenn der Stimulus nur noch einen Zapfentyp modulierte. Es scheint spezifische Areale für „Farbe“ und „Bewegung“ im Tectum opticum des Goldfisches zu geben, da bewegungssensitive Units bevorzugt im posterio-medialen Bereich in einer Tiefe zwischen 200-400 µm gefunden und farbspezifische Units vor allem im anterio-medialen Bereich entdeckt wurden.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dendritic systems, and in particular polyphenylene dendrimers, have recently attracted considerable attention from the synthetic organic chemistry community, as well as from photophysicists, particularly in view of the search for synthetic model analogies to photoelectric materials to fabricate organic light-emitting diodes (OLEDs), and even more advanced areas of research such as light-harvesting system, energy transfer and non-host device. Geometrically, dendrimers are unique systems that consist of a core, one or more dendrons, and surface groups. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Compared to small molecular or polymeric light-emitting materials, these dendritic materials can combine the benefits of both previous classes. The high molecular weights of these dendritic macromolecules, as well as the surface groups often attached to the distal ends of the dendrons, can improve the solution processability, and thus can be deposited from solution by simple processes such as spin-coating and ink-jet printing. Moreover, even better than the traditional polymeric light-emitting materials, the well-defined monodisperse distributed dendrimers possess a high purity comparable to that of small molecules, and as such can be fabricated into high performance OLEDs. Most importantly, the emissive chromophores can be located at the core of the dendrimer, within the dendrons, and/or at the surface of the dendrimers because of their unique dendritic architectures. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Therefore, the main goals of this thesis are the design and synthesis, characterization of novel functional dendrimers, e.g. polytriphenylene dendrimers for blue fluorescent, as well as iridium(III) complex cored polyphenylene dendrimers for green and red phosphorescent light emitting diodes. In additional to the above mentioned advantages of dendrimer based OLEDs, the modular molecular architecture and various functionalized units at different locations in polyphenylene dendrimers open up a tremendous scope for tuning a wide range of properties in addition to color, such as intermolecular interactions, charge mobility, quantum yield, and exciton diffusion. In conclusion, research into dendrimer containing OLEDs combines fundamental aspects of organic semiconductor physics, novel and highly sophisticated organic synthetic chemistry and elaborate device technology.rn