3 resultados para Barrett esophagus
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Ein pathologischer Gastrooesophagealer Reflux (GÖR) tritt häufig bei Kindern mitBehinderung und nach einer Operation am Oesophagus auf wie zum Beispiel nach Korrektureiner Oesophagusatresie. Bei diesen Kindern ist eine medikamentöse Therapie überwiegendzum Scheitern verurteilt und eine Therapie wie die der Antirefluxoperation wird notwendig.In der vorliegenden Arbeit werden die 100 Kinder beschrieben, die mit derVerdachtsdiagnose GÖR in den Jahren 1983 bis 1998 vorgestellt wurden. 68 Kinderbenötigten eine Antirefluxoperation. Schwerpunktmäßig werden neurologisch behinderteKinder (85%), bei denen erwartungsgemäß häufig ein GÖR vorliegt, untersucht. Mitbesonderem Interesse werden dabei das Vorliegen und Zusammentreffen mehrerer GÖRprädisponierenderErkrankungen (Behinderung und Zustand nach Korrektur einerOesophagusatresie) untersucht, um Hinweise für eine mögliche Differenzierung prae- undpostoperativer Bilder des GÖR und seine Komplikationen zu gewinnen.Weiterhin werden Aussagen gewonnen bezüglich des Alters der Kinder zum Zeitpunkt desAuftretens der Symptome und zum Zeitpunkt der Operation. Diese werden ebenso wie dieZeiträume zwischen dem Auftreten der Symptome und der Diagnosenstellung, bzw. demOperationszeitpunkt mit den Aussagen in der Literatur verglichen.Ferner wird überprüft, ob sich für die einzelnen Personengruppen (Kinder mit cerebralen undmotorischen Retardierungen (85%), Kinder mit angeborener Oesophagusatresie (4%), Kindermit beiderlei GÖR-prädisponierender Erkrankungen (3%) und Kinder ohne prädisponierendeErkrankungen (8%)) differenzierte Aussagen finden.A pathological gastroesophageal reflux (GER) is often found in handicapped children andafter surgical treatment at the esophagus e. g. after correction of esophagusatresia. Here,medical treatment is often ineffective and an antireflux plasty is needed.In this study 100 children are examined, who had the suspected diagnosis of GER in the years1983 1998. 68 children needed a surgical treatment. The majority form the neurologicalhandicapped children (85%), who are predisposed to GER as expected.A special interest of the study is on the existence and coincidence of several GERpredisposingdiseases (disability and esophagusatresia), in order to get an indication forpossible differentiations of pre- and postoperative symptoms and complications of GER.Furthermore evidence is obtained on the age of the children, when the symptoms appearedfirst and when the operation took place. These data and the period of time between theappearence of symptoms and the time of diagnosis and operation are compared with theinformation given in the literature.Moreover the different evidences between the four groups (children with cerebral andmotorial retardation (85%), children with congenital esophagusatresia (4%), children withboth (3%) and children without GER-predisposing diseases (8%)) are analysed.
Resumo:
Five different methods were critically examined to characterize the pore structure of the silica monoliths. The mesopore characterization was performed using: a) the classical BJH method of nitrogen sorption data, which showed overestimated values in the mesopore distribution and was improved by using the NLDFT method, b) the ISEC method implementing the PPM and PNM models, which were especially developed for monolithic silicas, that contrary to the particulate supports, demonstrate the two inflection points in the ISEC curve, enabling the calculation of pore connectivity, a measure for the mass transfer kinetics in the mesopore network, c) the mercury porosimetry using a new recommended mercury contact angle values. rnThe results of the characterization of mesopores of monolithic silica columns by the three methods indicated that all methods were useful with respect to the pore size distribution by volume, but only the ISEC method with implemented PPM and PNM models gave the average pore size and distribution based on the number average and the pore connectivity values.rnThe characterization of the flow-through pore was performed by two different methods: a) the mercury porosimetry, which was used not only for average flow-through pore value estimation, but also the assessment of entrapment. It was found that the mass transfer from the flow-through pores to mesopores was not hindered in case of small sized flow-through pores with a narrow distribution, b) the liquid penetration where the average flow-through pore values were obtained via existing equations and improved by the additional methods developed according to Hagen-Poiseuille rules. The result was that not the flow-through pore size influences the column bock pressure, but the surface area to volume ratio of silica skeleton is most decisive. Thus the monolith with lowest ratio values will be the most permeable. rnThe flow-through pore characterization results obtained by mercury porosimetry and liquid permeability were compared with the ones from imaging and image analysis. All named methods enable a reliable characterization of the flow-through pore diameters for the monolithic silica columns, but special care should be taken about the chosen theoretical model.rnThe measured pore characterization parameters were then linked with the mass transfer properties of monolithic silica columns. As indicated by the ISEC results, no restrictions in mass transfer resistance were noticed in mesopores due to their high connectivity. The mercury porosimetry results also gave evidence that no restrictions occur for mass transfer from flow-through pores to mesopores in the small scaled silica monoliths with narrow distribution. rnThe prediction of the optimum regimes of the pore structural parameters for the given target parameters in HPLC separations was performed. It was found that a low mass transfer resistance in the mesopore volume is achieved when the nominal diameter of the number average size distribution of the mesopores is appr. an order of magnitude larger that the molecular radius of the analyte. The effective diffusion coefficient of an analyte molecule in the mesopore volume is strongly dependent on the value of the nominal pore diameter of the number averaged pore size distribution. The mesopore size has to be adapted to the molecular size of the analyte, in particular for peptides and proteins. rnThe study on flow-through pores of silica monoliths demonstrated that the surface to volume of the skeletons ratio and external porosity are decisive for the column efficiency. The latter is independent from the flow-through pore diameter. The flow-through pore characteristics by direct and indirect approaches were assessed and theoretical column efficiency curves were derived. The study showed that next to the surface to volume ratio, the total porosity and its distribution of the flow-through pores and mesopores have a substantial effect on the column plate number, especially as the extent of adsorption increases. The column efficiency is increasing with decreasing flow through pore diameter, decreasing with external porosity, and increasing with total porosity. Though this tendency has a limit due to heterogeneity of the studied monolithic samples. We found that the maximum efficiency of the studied monolithic research columns could be reached at a skeleton diameter of ~ 0.5 µm. Furthermore when the intention is to maximize the column efficiency, more homogeneous monoliths should be prepared.rn
Resumo:
Acute myeloid leukemia (AML) is a very aggressive cancer of the hematopoietic system. Chemotherapy and immunotherapeutical approaches including hematopoietic stem cell transplantation (HSCT) and donor lymphocyte infusion (DLI) are the only curative options available. The beneficial graft-versus-leukemia (GVL) effect of cellular immunotherapy is mostly mediated by donor-derived CD8+ T lymphocytes that recognize minor histocompatibility antigens (mHags) and leukemia-associated antigens (LAAs) presented on the surface of AML blasts (Falkenburg et al. 2008; Kolb 2008). A main complication is graft-versus-host disease (GVHD) that can be induced when cytotoxic T lymphocytes (CTLs) recognize broadly expressed antigens. To reduce the risk of GVHD, specific allogeneic T-cell therapy inducing selective GVL responses could be an option (Barrett & Le Blanc 2010; Parmar et al. 2011; Smits et al. 2011). This requires efficient in vitro strategies to generate AML-reactive T cells with an early differentiation phenotype as well as vigorous effector functions and humanized mouse models to analyze the anti-leukemic potential of adoptively transferred T cells in vivo. In this study, AML-reactive CTL clones and oligoclonal T-cell lines could be reliably generated from the naive subset of healthy HLA-class I-identical donors by stimulation with primary AML blasts in mini-mixed-lymphocyte / leukemia cultures (MLLCs) in eight different patient / donor pairs. These CTLs were promising candidates for cellular immunotherapy because of their relatively early differentiation phenotype and strong proliferative and lytic capabilities. The addition of the common γ-chain cytokine IL-21 to the stimulation protocol enabled more precursors to develop into potent leukemia-reactive CTLs, presumably by its beneficial effects on cell survival and antigen-specific proliferation during the first weeks of cultures. It also strengthened the early-stage phenotype. Three long-term cultured CTLs exemplarily transferred into leukemia-engrafted immunodeficient NSG mice mediated a significant reduction of the leukemic burden after a single transfusion. These results demonstrate that CTL clones with reactivity to patient-derived AML blasts can be isolated from the naive compartment of healthy donors and show potent anti-leukemic effects in vivo. The herein described allo-MLLC approach with in vitro “programmed” naive CTL precursors independent of a HSCT setting is a valuable alternative to the conventional method of isolating in vivo primed donor CTLs out of patients after transplantation (Kloosterboer et al. 2004; Warren et al. 2010). This would make leukemia-reactive CTLs already available at the time point of HSCT, when residual leukemia disease is minimal and the chances for complete leukemia eradication are high. Furthermore, leukemia-reactive CTLs effectively expanded by this in vitro protocol can be used as screening populations to identify novel candidate LAAs and mHags for antigen-specific immunotherapy.