2 resultados para Barnes, Barry: Scientific knowledge. A sosiological analysis
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Analyzing and modeling relationships between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects in chemical datasets is a challenging task for scientific researchers in the field of cheminformatics. Therefore, (Q)SAR model validation is essential to ensure future model predictivity on unseen compounds. Proper validation is also one of the requirements of regulatory authorities in order to approve its use in real-world scenarios as an alternative testing method. However, at the same time, the question of how to validate a (Q)SAR model is still under discussion. In this work, we empirically compare a k-fold cross-validation with external test set validation. The introduced workflow allows to apply the built and validated models to large amounts of unseen data, and to compare the performance of the different validation approaches. Our experimental results indicate that cross-validation produces (Q)SAR models with higher predictivity than external test set validation and reduces the variance of the results. Statistical validation is important to evaluate the performance of (Q)SAR models, but does not support the user in better understanding the properties of the model or the underlying correlations. We present the 3D molecular viewer CheS-Mapper (Chemical Space Mapper) that arranges compounds in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kinds of features, like structural fragments as well as quantitative chemical descriptors. Comprehensive functionalities including clustering, alignment of compounds according to their 3D structure, and feature highlighting aid the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. Even though visualization tools for analyzing (Q)SAR information in small molecule datasets exist, integrated visualization methods that allows for the investigation of model validation results are still lacking. We propose visual validation, as an approach for the graphical inspection of (Q)SAR model validation results. New functionalities in CheS-Mapper 2.0 facilitate the analysis of (Q)SAR information and allow the visual validation of (Q)SAR models. The tool enables the comparison of model predictions to the actual activity in feature space. Our approach reveals if the endpoint is modeled too specific or too generic and highlights common properties of misclassified compounds. Moreover, the researcher can use CheS-Mapper to inspect how the (Q)SAR model predicts activity cliffs. The CheS-Mapper software is freely available at http://ches-mapper.org.
Resumo:
Die Neurogenese und axonale Wegfindung sind in den vergangenen Jahrzehnten Thema einer Vielzahl wissenschaftlicher Untersuchungen in den verschiedensten Organismen gewesen. Die zusammengetragenen Daten in Insekten und Crustaceen geben eine gute Übersicht darüber, wie das Nervensystem in Arthropoden aufgebaut wird. Die entwicklungsbiologischen Prozesse, die daran beteiligt sind, sind in den beiden genannten Gruppen sehr gut verstanden. In den Gruppen der Cheliceraten und Myriapoden jedoch wurden ähnliche Analysen bisher kaum durchgeführt. Das Hauptanliegen dieser Arbeit war es daher, Mechanismen in den Spinnen Achaearanea tepidariorum und Cupiennius salei, zwei Vertretern der Cheliceraten, zu untersuchen, die eine Rolle im Leitsystem der ventralen Mittellinie und bei der axonalen Wegfindung spielen. Eine Vorraussetzung hierfür sind Kenntnisse über die Architektur des Zentralnervensystems. In einem ersten Schritt beschrieb ich daher grundlegend die Morphologie des Nervensystems im Verlauf der gesamten Embryoalentwicklung. Ich konnte zeigen, dass in Spinnen ein für Arthropoden typisches Strickleiternervensystem gebildet wird. Dieses wird von segmental angelegten Neuronen geformt, wobei sowohl Gruppen von Zellen als auch einzelne Neurone daran beteiligt sind, die primären axonalen Trakte zu etablieren. Im Besonderen konnte ich eine Zelle identifizieren, die in Position, Projektionsmuster und der Expression des Markergens even-skipped vergleichbar zum PR2 Neuron in Drosophila ist, welches die posteriore Wurzel des Segmentalnervs anlegt.rnrnIn einem zweiten Ansatz untersuchte ich die ventrale Mittellinie in Spinnen im Bezug auf ihre mögliche Funktion in der axonalen Wegfindung. Es konnte gezeigt werden, dass es sich beim Epithel der Mittellinie, das die Lücke zwischen beiden Keimstreifhälften während des gesamten Prozesses der Inversion überspannt, um eine transiente Struktur handelt, die keine neuralen Zellen hervorbringt. Es ist daher vergleichbar mit der so genannten Floor plate in Vertebraten, die ebenfalls nur vorübergehend existiert. Die Untersuchung von single minded (sim) zeigte, dass es, anders als in Drosophila, wo sim ein wichtiges regulatorisches Gen für die korrekte Spezifizierung von Mittellinienzellen ist, nicht in den Zellen der Mittellinie, sondern in diesen benachbarten Zellen, exprimiert wird. Das ist vergleichbar mit Vertebraten. Zusätzlich konnte ich Expression von sim an den Basen der Gliedmassen und im Kopf nachweisen. Wie in Vertebraten könnte sim an der Musterbildung dieser Gewebe beteiligt sein. Dennoch spielt die Mittellinie in Spinnen eine wichtige Rolle als Organisator für auswachsende, kommissurale Axone. Diese Funktion teilt sie mit anderen Invertebraten und Vertebraten.rnrnDie Signaltransduktionskaskade, die an der axonalen Wegfindung an der Mittellinie beteiligt ist, ist in den verschiedensten Organismen hoch konserviert. In der vorliegenden Arbeit konnte ich sowohl in Achaearanea als auch in Cupiennius ein netrin Homolog identifizieren und eine konservierte Funktion des Wegfindungsmoleküls während der Bildung der Kommissuren aufzeigen. RNAi Experimente belegen, dass, wird die Funktion von netrin herunterreguliert, das Strickleiternervensystem nicht korrekt gebildet wird, ins Besondere die kommissuralen Faszikel. Des Weiteren konnte ich eine neue Funktion von netrin, die bisher in anderen Organsimen noch nicht beschrieben wurde, identifizieren. Neben seiner Rolle in der axonalen Wegfindung, scheint netrin auch an der epithelialen Morphogenese im zentralen Nervensystem beteiligt zu sein. In dieser Funktion scheint netrin in Gliazellen, die die epithelialen Vesikel der Invaginationsgruppen umhüllen, wichtig zu sein, um neurale Vorläuferzellen in einem undifferenzierten Zustand zu halten. Der Abbau von netrin Transkript durch RNA Interferenz führt zu einer verfrühten Segregation neuraler Vorläuferzellen aus dem epithelialen Verband der Invaginationsgruppen und zu einer Zunahme an Zellen, die den frühen Differenzierungsmarker islet exprimieren.