3 resultados para BLIND EQUALIZATION
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The horizontal and vertical system neurons (HS and VS cells) are part of a conserved set of lobula plate giant neurons (LPGNs) in the optic lobes of the adult brain. Structure and physiology of these cells are well known, predominantly from studies in larger Dipteran flies. Our knowledge about the ontogeny of these cells is limited and stems predominantly from laser ablation studies in larvae of the house fly Musca domestica. These studies suggested that the HS and VS cells stem from a single precursor, which, at least in Musca, has not yet divided in the second larval instar. A regulatory mutation (In(1)omb[H31]) in the Drosophila gene optomotor-blind (omb) leads to the selective loss of the adult HS and VS cells. This mutation causes a transient reduction in omb expression in what appears to be the entire optic lobe anlage (OLA) late in embryogenesis. Here, I have reinitiated the laser approach with the goal of identifying the presumptive embryonic HS/VS precursor cell in Drosophila. The usefulness of the laser ablation approach which has not been applied, so far, to cells lying deep within the Drosophila embryo, was first tested on two well defined embryonic sensory structures, the olfactory antenno-maxillary complex (AMC) and the light-sensitive Bolwing´s organ (BO). In the case of the AMC, the efficiency of the ablation procedure was demonstrated with a behavioral assay. When both AMCs were ablated, the response to an attractive odour (n-butanol) was clearly reduced. Interestingly, the larvae were not completely unresponsive but had a delayed response kinetics, indicating the existence of a second odour system. BO will be a useful test system for the selectivity of laser ablation when used at higher spatial resolution. An omb-Gal4 enhancer trap line was used to visualize the embryonic OLA by GFP fluorescence. This fluorescence allowed to guide the laser beam to the relevant structure within the embryo. The success of the ablations was monitored in the adult brain via the enhancer trap insertion A122 which selectively visualizes the HS and VS cell bodies. Due to their tight clustering, individual cells could not be identified in the embryonic OLA by conventional fluorescence microscopy. Nonetheless, systematic ablation of subdomains of the OLA allowed to localize the presumptive HS/VS precursor to a small area within the OLA, encompassing around 10 cells. Future studies at higher resolution should be able to identify the precursor as (an) individual cell(s). Most known lethal omb alleles do not complement the HS/VS phenotype of the In(1)omb[H31] allele. This is the expected behaviour of null alleles. Two lethal omb alleles that had been isolated previously by non-complementation of the omb hypomorphic allele bifid, have been reported, however, to complement In(1)omb[H31]. This report was based on low resolution paraffin histology of adult heads. Four mutations from this mutagenesis were characterized here in more detail (l(1)omb[11], l(1)omb[12], l(1)omb[13], and l(1)omb[15]). Using A122 as marker for the adult HS and VS cells, I could show, that only l(1)omb[11] can partly complement the HS/VS cell phenotype of In(1)omb[H31]. In order to identify the molecular lesions in these mutants, the exons and exon/intron junctions were sequenced in PCR-amplified material from heterozygous flies. Only in two mutants could the molecular cause for loss of omb function be identified: in l(1)omb[13]), a missense mutation causes the exchange of a highly conserved residue within the DNA-binding T-domain; in l(1)omb[15]), a nonsense mutation causes a C-terminal truncation. In the other two mutants apparently regulatory regions or not yet identified alternative exons are affected. To see whether mutant OMB protein in the missense mutant l(1)omb[13] is affected in DNA binding, electrophoretic shift assays on wildtype and mutant T-domains were performed. They revealed that the mutant no longer is able to bind the consensus palindromic T-box element.
Resumo:
Zusammenfassung:rnrnDas Ziel der Arbeit bestand darin mehr über die Funktion des T-Box Transkriptionsfaktors Omb zu erfahren. Dm omb ist der nächste Verwandte zu Hs Tbx2/3, die wegen ihrer Rolle bei verschiedenen Krebsarten für die Entwicklung neuer Therapien bedeutsam sind. rnIn drei, von Herrn Pflugfelder hergestellten, omb Allelen l(1)omb282, l(1)omb12, l(1)omb15 wurden neue Mutationen kartiert. Dabei handelt es sich um zwei missense-Mutationen und eine Stopmutation. Sie betreffen Aminosäurereste, die in allen T-Box Proteinen konserviert sind und daher vermutlich lebenswichtige Proteinabschnitte betreffen. In EMSA Versuchen konnte gezeigt werden, dass die missense-Mutationen die DNA-Bindung des Omb-T Proteins verhindern.rnFür die Suche nach Omb Zielgenen wurden Gene und phylogenetisch konservierte TBE-Genabschnitte auf ihre Regulation durch Omb getestet. Dabei wurde das Expressionsmuster von Genen mitels in situ und das Muster von enhancer getriebener β-Gal Expression histochemisch oder durch Immunfärbung von wildtypischen und l(1)omb15 Larven des dritten Stadiums verglichen. rnUpstream der mirr Transkriptionseinheit wurde ein cis-regulatorisches TBE-Fragment identifiziert, das ein Aktivitätsmuster in Flügelimaginalscheiben zeigte, welches dem von Mirr nahe kommt. Sowohl ein Omb Verlust als auch die Mutation der TBE Sequenz führten zu einer ähnlichen ektopischen Aktivierung des Fragments, was auf eine Abhängigkeit von Omb hinweist. rnIn der intronischen Sequenz von inv wurde ebenfalls ein TBE-Fragment entdeckt, das eine β-Gal-Aktivität in Flügelscheiben des späten L3 Stadiums anterior der A/P Grenze zeigte. Diese Expression könnte sich mit der späten für en/inv beschriebenen Expression (Blair, 1992) decken. Immunfärbungen bestätigten, dass der Verlust dieser Aktivität in omb0 tatsächlich durch den Verlust von Omb hervorgerufen wird und nicht durch eine Entwicklungsverzögerung der Larven verursacht wird.rnSchließlich wurde durch die Reparatur von TBX Expressionsvektoren eine Konstruktreihe (Legler, 2010) fertiggestellt, mit deren Hilfe die Auswirkungen einer Überexpression auf die Zellmotilität in Drosophila untersucht werden kann. Das soll helfen den Einfluss von TBX Proteinen auf die Invasivität von Krebszellen zu verstehen.rn
Resumo:
Die zeitliche und räumliche Expression von Genen trägt zu einem entscheidenden Ausmaß zu der Entwicklung eines Organismus bei. Unter vielen Faktoren spielt dabei die transkriptionelle Regulation eine wichtige Rolle. Diese basiert auf Anwesenheit und Binden von regulatorischen Proteinen an cis-regulatorischen Sequenzen (CRMs) und deren Einfluss auf die Transkriptionsmaschinerie am Promotor. Veränderungen der CRMs können zu Veränderungen der Genexpression führen, und somit einen Beitrag zur morphologischen Evolution leisten. rnIn dieser Arbeit wurde die transkriptionelle Regulation des Drosophila melanogaster Gens optomotor-blind insbesondere in den pupalen Tergiten untersucht. In einem Enhancer-Reporter screen wurde eine regulatorische Region in Intron IV, die Reportergen-Expression in den pupalen Tergiten treibt, identifiziert. Große Teile dieser Region (ombTU10 und ombTU11) trieben Reportergen-Expression in einem omb-ähnlichen Muster. Eine weitere Region (ombTU12) trieb Expression in einem für Hh-Zielgene typischen Expressionsmuster. Für ombTU12 konnte eine Hh-Abhängigkeit nachgewiesen werden. Die für Hh-Zielgene typische Enhanceraktivität konnte in dem Subfragment ombTU12Amin lokalisiert werden, welches zwei konservierte Bindestellen des Effektors der Hh-Signaltransduktionskaskase, Cubitus interruptus (Ci), enthält. Eine deutliche Abhängigkeit der Expression dieses Fragments von den Ci-Bindestellen konnte bisher aber noch nicht nachgewiesen werden.rnDeletionen verschiedener Bereiche dieser Tergitenenhancer-Region aus dem endogenen Gen sollten Aufschluss über deren Notwendigkeit in der Regulation von omb geben. Die Deletion des Fragments ombTU10 (ΔombTU10-2) führte zu einer Variabilität in der Pigmentierung der Abdominalsegmente A5 und A6 der Weibchen. Eine Deletion von Teilen des hh-responsiven Fragments ombTU12 (ΔombTU12A) zeigte keinen abdominalen Phänotyp. Dies deutet auf eine redundante Wirkung der Fragmente untereinander, oder mit einem weiteren bisher nicht identifizierten Tergitenenhancer im omb-Locus hin.rnFragmente, die in den pupalen Tergiten Reportergen-Expression trieben, waren zum Teil auch in Imaginalscheiben von Larven aktiv. Desweiteren wurde gezeigt, dass Fragmente, die in Isolation Reportergen-Expression trieben, als Fusionskonstrukt mit benachbarten genomischen Sequenzen keine Expression zeigten und somit im genomischen Kontext inaktiv sein können. Demzufolge sind nicht nur Aktivator- sondern auch Repressorregionen für die korrekte Expression eines Gens von Bedeutung.rnDie Analyse von omb Enhancer-Trap Insertionen zeigte, dass von drei untersuchten Typen (PlacW, PGalW und PGawB) nur Insertionen vom letzteren in den pupalen Tergiten aktiv waren. Von vier PGawB Insertionen waren nur drei aktiv. Es ist denkbar, dass die Orientierung der inaktiven Insertion für die mangelnde Responsivität verantwortlich ist.rn