5 resultados para BDNF
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die Mitglieder der Neurotrophin-Familie (NGF, BDNF, NT-3 und NT-4) sind sekretierte Neuropeptide, die eine bedeutende Rolle bei der Entwicklung von Nervenzellen und bei der Modulation der synaptischen Transmission spielen. Wenngleich eine aktivitätsabhängige Sekretion von BDNF bereits gezeigt werden konnte, wurden die subzelluläre Expression und die Ausschüttung der anderen Neurotrophine bislang nur unzureichend charakterisiert. Um die Expression und die Ausschüttung aller Neurotrophine unter identischen Bedingungen untersuchen zu können, wurde in der vorliegenden Arbeit das Expressionsmuster und die synaptische Ausschüttung GFP-markierter Neurotrophine in dissoziierten hippokampalen Neuronen mit Hilfe der konfokalen Fluoreszenz-Videomikroskopie zeitaufgelöst untersucht. Zwei Phänotypen konnten unterschieden werden: der distale vesikuläre Expressionstyp mit Neurotrophin-beinhaltenden Vesikeln in distalen Neuriten, und der proximale Expressionstyp mit einer diffusen Neurotrophin-Verteilung in den Neuriten und Neurotrophin-beinhaltenden Vesikeln im Soma des Neurons und in den proximalen Dendriten. Der distale vesikuläre Phänotyp entsprach einer Verteilung des entsprechenden Neurotrophins in die sekretorischen Granula des aktivitätsabhängigen Sekretionsweges, während der proximale Phänotyp den Transport eines Neurotrophins in den konstitutiven Sekretionsweg widerspiegelte. Alle Neurotrophine erreichten in hippokampalen Neuronen prinzipiell beide Sekretionswege. Jedoch gelangten BDNF und NT-3 mit einer größeren Effizienz in den regulierten Sekretionsweg als NT-4 und NGF (BDNF: in 98% aller Zellen, NT-3: 85%, NT-4: 23% und NGF: 46%). Neurotrophine besitzen, wie es für sekretorische Peptide üblich ist, eine Vorläufersequenz, die während der Reifung des Proteins proteolytisch abgespalten wird. Die Fusion dieser Präpro-Sequenz von BDNF mit der Sequenz des maturen NT-4 bewirkte einen effizienteren Transport von NT-4 in die sekretorischen Granula des regulierten Sekretionsweges, und zeigte die große Bedeutung der Präpro-Sequenz für das zelluläre Verteilungsmuster von Neurotrophinen. In Neuronen, in denen die Neurotrophine in den regulierten Sekretionsweg transportiert wurden, konnte eine aktivitätsabhängige Sekretion der Neurotrophine an postsynaptische Strukturen glutamaterger Synapsen beobachtet werden. Die aktivitätsabhängige postsynaptische Ausschüttung der Neurotrophine zeigte eine Heterogenität in der Kinetik der Sekretion (exponentieller Abfall des Neurotrophin-Signals mit Zeitkonstanten von tau = 121 bis 307s). Die Präinkubtion mit dem Protonen-Ionophor Monensin, welcher die Neutralisation des intragranulären pH-Wertes und somit die Solubilisierung der dicht gepackten Proteinstrukturen in den Vesikeln erzwingt, erhöhte die Geschwindigkeit der Neurotrophin-Ausschüttung auf den Wert des unter physiologischen Bedingungen schnellsten Neurotrophins NT-4. Dennoch blieb die Geschwindigkeit der Neurotrophin-Ausschüttung im Vergleich zur Neurotransmitter-Ausschüttung langsam (tau = 13 ± 2 s). Diese Daten belegen eindeutig, dass die Neutralisation der sekretorischen Granula die Geschwindigkeit der Neurotrophin-Ausschüttung kritisch determiniert und die Geschwindigkeit der Neurotrophin-Ausschüttung im Vergleich zur konventionellen Neurotransmitter-Ausschüttung langsam erfolgt. Des Weiteren konnte gezeigt werden, dass das Neurotrophin BDNF effizient in distale vesikuläre Strukturen von CA1 Pyramidenzellen organotypischer Schnittkulturen des Hippokampus sortiert wird. Die basalen elektrischen Eigenschaften von CA1 Pyramidenzellen BDNF-defizienter Mäuse sind vergleichbar zu den Eigenschaften von Wildtyp Mäusen. Sowohl das Eigenpotential der CA1 Pyramidenzellen, die Form der Aktionspotentiale als auch die evozierten Antworten der CA1 Pyramdenzellen auf eine gepaarte präsynaptische Stimulation der Schaffer-Kollateralen zeigten bei BDNF-/- -, BDNF+/- - und BDNF+/+ -Mäusen keine signifikanten Unterschiede. Die Fähigkeit der CA1 Pyramidenzellen auf eine hochfrequente Reizung mit einer Langzeitpotenzierung (LTP) der postsynaptischen Ströme zu reagieren ist jedoch bei den BDNF-defizienten Mäusen beinträchtigt. Eine verminderte Induktion von LTP war in den BDNF-defizienten Mäusen nach tetanischer Stimulation der präsynaptischen Schaffer-Kollateralen und simultaner postsynaptischer Depolarisation der CA1 Pyramidenzelle zu beobachten.
Resumo:
Das Neurotrophin BDNF ist ein protektiver Faktor, der das Wachstum, die Differenzierung und das Überleben neuronaler Zellen fördert. Neben der neuronalen Expression wird BDNF auch peripher exprimiert, so auch in Endothelzellen. Dort stimuliert BDNF die Angiogenese und fördert das Endothelzellüberleben. Eine Regulation der BDNF-Expression unter pathologischen Bedingungen wie Epilepsie, M. Alzheimer, M. Parkinson, Depression und Ischämie ist bereits mehrfach beschrieben worden. Literaturdaten zeigen veränderte BDNF-Expressionen unter pathologischen Bedingungen zeitgleich mit einem erhöhten Spiegel des Tumornekrosefaktors (TNF-a) bzw. einer Aktivierung der Proteinkinase C (PKC). Ob ein erhöhter TNF-a-Spiegel bzw. die Aktivierung der PKC Ursache der veränderten BDNF-Expression ist, ist bisher noch nicht bekannt. In der vorliegenden Arbeit konnte gezeigt werden, dass sowohl TNF-a als auch eine Aktivierung der PKC in peripheren Endothelzellen die BDNF-Expression konzentrations- und zeitabhängig reduziert. Im Fall von TNF-a wird diese Reduktion über den TNF-a-Rezeptor 1 (TNFR1) vermittelt und auf dem Niveau der Transkription reguliert. Weiterhin konnte gezeigt werden, dass BDNF die Angiogenese-Aktivität von humanen Umbilikalvenen-Endothelzellen (HUVEC) in Abhängigkeit der BDNF-Rezeptoren TrkB und p75NTR stimuliert. TNF-a hingegen reduziert die Angiogenese in HUVEC. Bei der Regulation der BDNF-Expression durch den PKC-aktivierenden Phorbolester Phorbol-12-Myristat-13-Acetat (PMA) konnte eine Beteiligung der PKC-Isoformen d gezeigt werden. Die Verminderung der BDNF-Expression durch PKC-Aktivierung konnte durch Inhibitoren der PKC d aufgehoben werden. PMA hatte keine destabilisierende Wirkung auf die BDNF-mRNA. Auch hier wird BDNF durch PMA auf dem Niveau der Transkription reguliert. Weiterhin ist bisher eine pharmakologische Regulation der BDNF-Expression noch nicht näher untersucht worden. Erstmalig konnte eine Wirkung des b1-Adrenorezeptorblockers Nebivolol auf die BDNF-mRNA-Expression beobachtet werden. Nebivolol erhöht die BDNF-Expression in zerebralen Endothelzellen in vitro und im Mäuseherzen in vivo. Hierbei handelt es sich um eine substanzspezifische Wirkung von Nebivolol, die NO-unabhängig verläuft und nicht über den b3-Adrenozeptor vermittelt wird. Teile der klinisch beobachteten protektiven Wirkungen von Nebivolol könnten auf eine erhöhte BDNF-Expression zurückgeführt werden.
Resumo:
Der visuelle Kortex ist eine der attraktivsten Modellsysteme zur Untersuchung der molekularen Mechanismen der synaptischen Plastizität im Gehirn. Es hat sich gezeigt, dass der Wachstumsfaktor brain-derived-neurotrophic-factor (BDNF) und die GABAerge Hemmung während der Entwicklung eine essentielle Funktion in der Regulierung der synaptischen Plastizität im visuellen Kortex besitzen. BDNF bindet u.a. an TrkB Rezeptoren, die das Signal intrazellular an unterschiedliche Effektormoleküle weiter vermitteln. Außer BDNF sind auch andere TrkB-Rezeptor Agonisten in der Literatur beschrieben. Einer davon ist das kürzlich identifizierte Flavonoid 7,8-Dihydroxyflavone (7,8-DHF), welchem eine neurotrophe Wirkung zugeschrieben wird. Im ersten Abschnitt der vorliegenden Doktorarbeit wurde der Effekt dieses Agonisten auf die synaptische Übertragung und intrinsischen Zelleigenschaften im visuellen Kortex der Maus untersucht. Dies wurde mit Hilfe der whole-cell patch clamp Methode durchgeführt, wobei die synaptischen Eingänge der Pyramidalzellen der kortikalen Schicht 2/3 von besonderem Interesse waren.rnEine 30 minütige Inkubationszeit der kortikalen Schnitte mit 7,8 DHF (20µM) erzielte eine signifikante Reduktion der GABAergen Hemmung, während die glutamaterge synaptische Übertragung unverändert blieb. Des weiteren konnte in Gegenwart von 7,8 DHF eine Veränderung der intrinsischen neuronalen Zellmembraneigenschaften beobachtet werden. Dies wurde deutlich in der Erhöhung des Eingangwiderstandes und der Frequenz der induzierten Aktionspotentiale. Die chronische Applikation von 7,8 DHF in vivo bestätigte die selektive Wirkung von 7,8 DHF auf das GABAerge System. rnDie Rolle des BDNF-TrkB-Signalweges in der GABAergen Hemmung nach kortikalen Verletzungen ist bisher wenig verstanden. Eine häufig beschriebene elektrophysiologische Veränderung nach kortikaler Verletzung ist eine Reduktion in der GABAergen Hemmung. Im zweiten Abschnitt dieser Doktorarbeit wurde hierzu die Funktion des BDNF-TrkB-Signalweges auf die GABAerge Hemmung nach kortikaler Verletzung untersucht. Es wurde ein "ex-vivo/in-vitro“ Laser-Läsions Modell verwendet, wobei mittels eines Lasers im visuellen Kortex von WT und heterozygoten BDNF (+/−) Mäusen eine definierte, reproduzierbare Läsion induziert wurde. Nachfolgende elektrophysiologische Messungen ergaben, dass die Auswirkung einer Verletzung des visuellen Kortex auf die GABAerge Funktion signifikant von der basalen BDNF Konzentration im Kortex abhängt. Des weiteren konnte beobachtet werden, dass nach kortikaler Verletzung in WT Mäusen sowohl die Frequenz der basalen inhibitorischen, postsynaptischen Potentiale (mIPSCs) reduziert war, als auch ein erhöhtes Paired-Pulse Verhältnis vorlag. Diese Ergebnisse deuten auf Veränderungen der präsynaptischen Funktion inhibitorischer Synapsen auf Pyramidalneurone hin. Im Gegensatz dazu konnte in BDNF (+/−) mice Mäusen eine erhöhte und gleichzeitig verlängerte mIPSC-Amplitude beobachtet werden, induziert durch Reizung afferenter Nervenfasern. Hieraus lässt sich schließen, dass kortikale Verletzungen in BDNF (+/−) mice Mäusen Auswirkungen auf die Eigenschaften von postsynaptischen GABAA-Rezeptoren haben. Die nachfolgende Gabe eines TrkB-Rezeptor Antagonisten bestätigte diese Ergebnisse für das GABAerge System post-Läsion. Dies zeigt auch, dass die Änderungen der synaptischen Hemmung nicht auf eine Reduktion der BDNF-Konzentration zurückzuführen sind. Zusammengefasst zeigen die Ergebnisse der vorliegenden Arbeit, dass der BDNF-TrkB Signalweg eine wichtige Rolle in der Reorganisation der GABAergen Hemmung nach kortikalen Verletzungen spielt. So könnte ein TrkB-Rezeptor Agonist, wie das kürzlich entdeckte 7,8-DHF, über eine Modulation der BDNF-TrB Signalkaskade pharmakologisch die funktionelle Reorganisation des Kortex nach einer fokalen Gehirnverletzung fördern. rnrn
Resumo:
Das Corticotropin Releasing Hormon (CRH) ist ein zentraler Mediator des neuroendokrinen Systems von Säugetieren und kontrolliert die physiologische Stressreaktion des Körpers. Zudem zeigten in vitro Daten, dass es Neuroprotektion gegenüber oxidativem Stress induzieren kann. In der vorliegenden Arbeit konnte erstmals ein neuroprotektiver Effekt des CRH in vivo gezeigt werden. Die Überexpression des CRH im ZNS von Mäusen konnte Nervenzellen in vivo vor Exzitotoxizität schützen; nach Injektion des Exzitotoxins Kainat verkürzte die CRH-Überexpression die Dauer der epileptischen Anfälle, schützte die Neurone der betroffenen Hippocampusregion vor Zelltod und verhinderte die bei Exzitotoxizität und vielen neurodegenerativen Erkrankungen auftretende Neuroinflammation. Desweiteren konnten in CRH-überexprimierenden Tieren erhöhte BDNF-Proteinspiegel nachgewiesen werden. BDNF, ein bedeutender neurotropher Faktor im ZNS, vermittelt daher teilweise die CRH-induzierte Neuroprotektion gegenüber der Exzitotoxizität in vivo. Im Rahmen dieser Arbeit wurde mit Connexin43, dem Haupt-Gap Junction-Protein der Astrozyten, ein neues CRH-Zielgen im ZNS identifiziert. Es konnte erstmals gezeigt werden, dass CRH sowohl die Expression des Connexin43-Gens als auch den Connexin43-Proteinspiegel in vitro und in vivo erhöht. Diese Effekte werden über die Aktivierung des CRH-Rezeptor 1 und nachfolgend der PKA- und MAPK-Signalwege vermittelt. In Übereinstimmung mit der Hochregulation des Connexin43-Proteinspiegels verstärkte CRH auch die interzelluläre Kommunikation über Gap Junctions. Physiologisch hat diese CRH-induzierte Verstärkung der astrozytären Gap Junction-Kommunikation eine große Bedeutung für die Neuroprotektion, da eine Hochregulation der interzellulären Kommunikation schnell toxische Moleküle verdünnt, Energiesubstrate und protektive Faktoren verteilt und Ionen abpuffert. Dadurch werden Schädigungen durch oxidativen Stress in den Zellen reduziert, was über die Analyse der Proteincarbonylierung gezeigt wurde. Die Relevanz der astrozytären Gap Junction-Kommunikation für das Überleben der Neurone konnte in organotypischen hippocampalen Schnitten und in Neuron-Astrozyten-Co-Kulturen deutlich gemacht werden. Die im Rahmen der vorliegenden Arbeit gewonnenen Daten zeigen, dass die Stress-induzierte Sekretion von CRH im ZNS zur verstärkten Expression neuroprotektiver Moleküle wie BDNF und Connexin43 beiträgt. Diese vermögen Neurone gegenüber toxischen Einflüssen zu schützen und zum Erhalt ihrer Funktion beizutragen. Die protektiven CRH-Effekte könnten speziell bei chronischen neurodegenerativen Krankheiten wie der Alzheimerschen Demenz und der Parkinsonschen Krankheit hilfreich sein.
Resumo:
Die Neurotrophine aus Säugetiere BDNF und NT-3 sind von Neuronen sekretierte Wachstumsfaktoren. Ferner sind Neurotrophine in verschiedene Formen der aktivitätsabhängigen synaptische Plastizität involviert. Obwohl die Ausschüttung von Neurotrophine aus Synapsen beschrieben worden ist, sind die intrazellulären Signalkaskaden, die die synaptische Ausschüttung von Neurotrophine regulieren, bei weitem nicht verstanden. Deswegen ist die Analyse der Sekretion von Neurotrophine auf subzellulärer Ebene erforderlich, um die genaue Rolle von präsynaptische und postsynaptische NT-Sekretion in der synaptischen Plastizität aufzudecken. In der vorliegenden Arbeit wurden die Kulturen von dissoziierten hippocampalen Neuronen aus Ratten mit grün fluoreszierenden Protein-markierten Konstrukten von BDNF und NT-3 transfiziert und Neurotrophine-enthaltenden Vesikeln durch die Colokalisierung mit dem cotransfizierten postsynaptischen Marker PSD-95-DsRed an glutamatergen Synapsen identifiziert. Depolarisationsinduzierte Sekretion von BDNF und NT-3 wurde per Direktaufnahme am Fluoreszenzmikroskop beobachtet. Die unvermittelte postsynaptische Depolarisation mit erhöhtem Kalium, in Gegenwart von Inhibitoren der synaptischen Transmission, erlaubte die Untersuchung der Signalwege, die am postsynaptischen Sekretionsprozess der Neurotrophinvesikel beteiligt sind. Es konnte gezeigt werden, dass die depolarisationsinduzierte postsynaptische Ausschüttung der Neurotrophine durch Calcium-Einstrom ausgelöst wird, entweder über L-Typ-spannungsabhängige Calcium-Kanäle oder über NMDA-Rezeptoren. Eine anschließende Freisetzung von Calcium aus intrazellulären Speichern über Ryanodin-Rezeptoren ist für den Sekretionsprozess erforderlich. Die postsynaptische Neurotrophinausschüttung wird durch KN-62 und KN-93 gehemmt, was auf eine unmittelbare Abhängigkeit von aktiver alpha-Calcium-Calmodulin-abhängige Proteinkinase II (CaMKII) hinweist. Der Inhibitor der cAMP/Proteinkinase A (PKA), Rp-cAMP-S, sowie der NO-Donor, SNP, minderten die Neurotrophinausschüttung. Hingegen blieben die Erhöhung des intrazellulären cAMP und der NO-Synthase-Inhibitor L-NMMA ohne Wirkung. Mit dem Trk-Inhibitor K252a konnte gezeigt werden, dass autokrine Neurotrophin-induzierte Neurotrophinausschüttung nicht an der synaptischen Freisetzung der Neurotrophine beiträgt und, dass BDNF seine eigene postsynaptische Sekretion nicht auslöst. Freisetzungsexperimente mit dem Fluoreszenz-Quencher Bromphenolblau konnten den Nachweis erbringen, dass asynchrone und anhaltende Fusionsporenöffnung von Neurotrophinvesikeln während der Sekretion stattfindet. Wegen der im Vergleich zum komplexen Sekretionsprozess schnellen Fusionsporenöffnung, scheint die Freisetzungsgeschwindigkeit von Neurotrophine durch ihre Diffusion aus dem Vesikel begrenzt. Zusammenfassend zeigen diese Ergebnisse eine starke Abhängigkeit der aktivitätsabhängigen postsynaptischen Neurotrophinausschüttung vom Calcium-Einstrom, von der Freisetzung von Calcium aus internen Speichern, von der Aktivierung der CaMKII und einem intakten Funktion der PKA, während der Trk-Signalweg, die Aktivierung von Natrium-Kanäle und NO-Signale nicht erforderlich sind.