2 resultados para Asian Continental Ancestry Group

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mit dieser Arbeit wird am Beispiel der Gimpel der Gattung Pyrrhula (Aves: Fringillidae) eine vergleichende phylogenetische Methodik angewandt. Der dafür gewählte Untersuchungsansatz beinhaltet v.a. molekulargenetische und morphologische Methoden, deren Ergebnisse vor dem biogeographischen Hintergrund der Gattung analysiert werden. Diese Arbeit bestätigt die traditionelle Abgrenzung der Gimpel gegenüber den anderen Formen der Finkenfamilie. Die Gattung stellt eine monophyletische Gruppe dar und ist sowohl anhand molekulargenetischer als auch morphologischer Merkmale hervorragend umgrenzbar. Eine Vereinigung mit der Schwestergattung Pinicola ist demgegenüber nicht gerechtfertigt. Die mit klassischen Untersuchungsverfahren bestimmten Gruppierungen der Gattung lassen sich auch mit modernen Methoden bestätigen. Pyrrhula besteht aus drei Hauptverwandtschaftsgruppen: „Südostasiatische Gimpel“ (P. nipalensis und P. leucogenis), „Himalayagimpel“ (P. aurantiaca, P. erythaca, P. erythrocephala) und „Eurasische Gimpel“ (P. pyrrhula s.l.). Innerhalb von P. pyrrhula s.l. lassen sich drei genetisch und morphologisch unterschiedlich differenzierte Untergruppierungen mit eigenständige Merkmalskombinationen ausmachen: P. (p.) murina, P. (p.) cineracea und P. (p.) griseiventris. Das Entstehungszentrum von Pyrrhula befand sich vermutlich im südöstlichen Asien. Anhand der molekulargenetischen und biogeographischen Daten lassen sich ungefähre Ausbreitungs- und Diversifizierungsprozesse datieren. Vom Entstehungszentrum ging eine präpleistozäne Ausbreitungswelle aus, die die Aufspaltung der Stammlinienvertreter der Südostasiatischen Gimpel und später die der Himalayagimpel-Stammlinie zur Folge hatten. Etwa zeitgleich begann die Ausbreitung der Vorfahren der Eurasischen Gimpel bis ins westliche Südeuropa. Im frühen Pleistozän spalteten sich die Vorläufer des rezenten P. aurantica ab, gefolgt von der Trennung der südostasiatischen Stammlinie in die Vorfahren von P. nipalensis und P. leucogenis. Daraufhin folgten rasche spätpleistozäne Ausbreitungen und Diversifizierungen, die das Überdauern von Gimpeln in südostchinesischen bzw. mediterranen Glazialrefugien nahelegen. Dabei trennten sich die Stammlinien von P. erythrocephala und P. erythaca ungefähr gleichzeitig mit jenen der Stammlinien von P. pyrrhula s.str., P. (p.) murina und P. (p.) griseiventris. Die P. (p.) cineracea-Stammlinie folgte wiederum etwas später. Die Vorläufer der heutigen P. pyrrhula s.str. nahmen im späten Pleistozän mehrfach ostwärts gerichtete Ausbreitungen vor, während derer sie sich über weite Teile Eurasiens bis nach Kamtschatka verbreiteten. Die morphologischen Differenzierungen der einzelnen Formen wurden wahrscheinlich stark durch die geographischen Verhältnisse beeinflusst. Neben Isolationseffekten auf Inseln (murina) spielten vermutlich auch pleistozäne Refugialgebiete der Mandschurei und Japans für die Entstehung der heutigen griseiventris und das nordmongolische Refugium für cineracea eine große Rolle. Der gefiedermorphologische Geschlechtsmonomorphismus von P. nipalensis und P. leucogenis könnte dabei einen stammesgeschichtlich ancestralen Zustand darstellen, jener von murina ist dagegen sicher eine sekundäre Reduktionserscheinung. Auf Grundlage des Biospezieskonzeptes erlauben die erarbeiteten phylogenetischen Daten, die Gattung Pyrrhula entweder in sechs oder in neun Arten (inkl. zweier Superspezies) zu unterteilen. Der zahlenmäßige Unterschied entsteht dabei durch die unterschiedliche Klassifikation der Formen murina, cineracea und griseiventris, die entweder P. pyrrhula als Subspezies angeschlossen werden oder als Angehörige einer Superspezies P. [pyrrhula] Artrang erhalten.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mongolia occupies a central position within the eastern branch of the large accretionary Central Asian Orogenic Belt (CAOB) or Altaids. The present work aims to outline the geodynamic environment and possible evolution of this part of the eastern CAOB, predominantly from the Cambrian to the middle Palaeozoic. The investigation primarily focussed on zircon geochronology as well as whole-rock geochemical and Sm–Nd isotopic analyses for a variety of metaigneous rocks from the southern Hangay and Gobi-Altai regions in south-central Mongolia. The southern slope of the Hangay Mountains in central Mongolia exposes a large NWSE-trending middle Neoproterozoic ophiolitic complex (c. 650 Ma), which is tectonically integrated within an accretionary complex developed between the Precambrian Baydrag and Hangay crustal blocks. Formation of the entire accretionary system along the north-eastern margin of the Baydrag block mainly occurred during the early Cambrian, but convergence within this orogenic zone continued until the early Ordovician, because of on-going southward subduction-accretion of the Baydrag block. An important discovery is the identification of a late Mesoproterozoic to early Neoproterozoic belt within the northern Gobi-Altai that was reworked during the late Cambrian and throughout the late Ordovician/Devonian. Early Silurian low-grade mafic and felsic metavolcanic rocks from the northern Gobi-Altai display subduction-related geochemical features and highly heterogeneous Nd isotopic compositions, which suggest an origin at a mature active continental margin. Early Devonian protoliths of granodioritic and mafic gneisses from the southern Gobi-Altai display geochemical and Nd isotopic compositions compatible with derivation and evolution from predominantly juvenile crustal and mantel sources and these rocks may have been emplaced within the outboard portion of the late Ordovician/early Silurian active continental margin. Moreover, middle Devonian low-grade metavolcanic rocks from the southwestern Gobi-Altai yielded geochemical and Nd isotopic data consistent with emplacement in a transitional arc-backarc setting. The combined U–Pb zircon ages and geochemical data obtained from the Gobi-Altai region suggest that magmatism across an active continental margin migrated oceanwards through time by way of subduction zone retreat throughout the Devonian. Progressive extension of the continental margin was associated with the opening of a backarc basin and culminated in the late Devonian with the formation of a Japan-type arc front facing a southward open oceanic realm (present-day coordinates).