1 resultado para Ara (Yacht)

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last decades the prevalence of food allergies has continually increased on a world wide scale. While there are effective treatments available for bee and wasp venom allergic patients, there is currently no established therapy for the treatment of severe food allergies. Aim of the project was to genetically fuse different food allergens with the immune modulating Toll-like receptor 5 (TLR5)-ligand flagellin and to test these constructs for their immune modulatory capacities both in vitro and in vivo. Chicken ovalbumin (Ova) as model antigen, Pru p 3, and Ara h 2 the respective major allergens from peach and peanut were used as allergens. The potential vaccine candidates were characterized by protein biochemical methods (purity, folding, endotoxin contaminations). Moreover, their immune modulating effects on cell culture lines (TLR5-receptor activation) and primary mouse immune cells (myeloid and plasmacytoid dendritic cells) were investigated. Additionally, the prophylactic and therapeutic use of the flagellin Ova fusion protein (rflaA:Ova) were investigated in a mouse model of intestinal allergy. In myeloid dendritic cells (mDC) stimulation with the fusion proteins led to a strong cell activation and cytokine secretion. Here, the fusion proteins proved to be a much stronger stimulus than the equimolar amount of both proteins provided alone or as a mixture. Noteworthy, stimulation with rflaA:Ova induced the secretion of the anti-inflammatory cytokine IL-10 from mDC. In co-culture experiments this IL-10 secretion suppressed the Ova-induced secretion of Th1 and Th2 cytokines from Ova-specific CD4 T cells. Using MyD88-deficient mDC this repression of cytokine secretion was shown to be TLR-dependent. Finally, the potency of the rflaA:Ova construct was investigated in a mouse model of Ova-induced intestinal allergy. In a prophylactic vaccination approach rflaA:Ova was shown to prevent the establishment of the intestinal allergy and all associated symptoms (weight loss, temperature drop, soft faeces). This fusion protein-mediated protection was accompanied by a reduced T cell activation, and reduced Th2 cytokines in intestinal homogenates. These effects were paralleled by a strong induction of Ova-specific IgG2a antibodies in rflaA:Ova-vaccinated sera, while Ova-specific IgE antibody production was significantly reduced. Therapeutic vaccination with rflaA:Ova reduced allergic symptoms and T cell activation but did not influence weight loss and antibody production. In all in vivo experiments vaccination with both proteins either provided alone or as a mixture did not have comparable effects. Future experiments aim at elucidating the mechanism and further optimization of the therapeutic vaccination approach. The results presented in this thesis demonstrate, that fusion proteins containing flagellin have strong immune modulatory capacities both in vitro and in vivo. Therefore, such constructs are promising vaccine candidates for the therapy of type I allergies.